Sharply Transitive Sets of Permutations

Peter Müller (joint with Gábor Nagy)

Vienna, July 6th 2012

Notation

Ω:	Finite set
$Sym(\Omega)$:	Symmetric group on Ω
Sym(n):	Symmetric group on $\{1, 2, \ldots, n\}$

Definition

 $S \subseteq \text{Sym}(\Omega)$ sharply transitive: For any $\alpha, \beta \in \Omega$ exactly one $g \in S$ with $\alpha^g = \beta$

Definition

 $S \subseteq Sym(\Omega)$ sharply 2-transitive:

S sharply transitive on pairs $(lpha_1, lpha_2)$, $lpha_1
eq lpha_2$

Observation by Ernst Witt:

Projective plane of order *n*

$$S \subseteq \operatorname{Sym}(n)$$
 sharply 2-transitive

Results by

- Lorimer 1973 (three papers)
- O'Nan 1985
- Grundhöfer & Müller 2009
- Müller & Nagy 2011

yield:

Theorem

Take
$$S \subseteq Sym(n)$$
 sharply 2-transitive, set $G = \langle S \rangle$. Then:
(a) $n = p^e$, $G \leq AGL_e(\mathbb{F}_p)$, or
(b) $G = Alt(n)$ or $Sym(n)$, or
(c) $G = M_{24}$

$$P_g$$
 = permutation matrix of g

From

$$S$$
 sharply transitive $\iff \sum_{g \in S} P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$

we get

 ${\mathcal G} \leq {\mathsf{Sym}}(\Omega)$ contains sharply transitive set

$$\sum_{g \in G} x_g P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \text{ has solution } x_g \in \{0, 1\}$$

Proof.

Count triples $(b, c, g) \in B \times C \times S$ with $b = c^g!$

Theorem

$$S \subseteq Alt(n)$$
 sharply 2-transitive. Then $n \equiv 0$ or 1 (mod 4)

Proof.

Set
$$B = \{(i,j) \mid i < j\}, \ C = \{(i,j) \mid i > j\}$$

$$|B \cap C^{g}| =$$
 number of $i < j$ with $i^{g^{-1}} > j^{g^{-1}}$ is even

Thus

$$(\frac{n(n-1)}{2})^2 = |B||C| = \sum_{g \in S} |B \cap C^g|$$

is even

Theorem (O'Nan)

 $P\Gamma L(m,q)$, $m \ge 3$, has no sharply 2-transitive subset

Remark

 $\mathsf{PFL}(m,q)$ is automorphism group of symmetric block design

Symmetric (ν, k, λ) -design

- ν : number of points
- k: size of a block
- λ : size of intersection of two distinct blocks

$$(\nu-1)\lambda = k^2 - k$$
 $k(\nu-k) = (k-\lambda)(\nu-1)$

Theorem

Let $\Omega \cup \{x\}$ be the points of symmetric (ν, k, λ) -design. Then Aut(Design) contains no sharply transitive set on Ω .

Proof.

$$S$$
 sharply transitive on $\Omega \Longrightarrow |S| = |\Omega| =
u - 1$

(i)
$$B = C \subseteq \Omega$$
 is block, hence $|B \cap C^g| = k$ or $\lambda \Rightarrow ak + (\nu - 1 - a)\lambda = \sum_{g \in S} |B \cap C^g| = |B||C| = k^2 \Rightarrow a(k - \lambda) = k$

(ii)
$$B \cup \{x\} = C \cup \{x\}$$
 is block, hence $|B \cap C^g| = k - 1$ or $\lambda - 1$
 $b(k-1) + (\nu - 1 - b)(\lambda - 1) = (k - 1)^2 \Rightarrow$
 $b(k - \lambda) = \nu - k$

$$egin{array}{ccc} k-\lambda & \mid &
u \ (k-\lambda)^2 & \mid & k(
u-k) = (k-\lambda)(
u-1) \end{array}
ight\} \Rightarrow k-\lambda = 1$$

Hence k = 1 or $\nu - 1$ (trivial design)

Unfortunately ...

$$\sum_{r \in G} x_g P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
(1)

has integral solutions in many interesting cases:

- $G = M_{24}$ of degree 23 \cdot 24, or
- G = Sym(n) of degree (n-1)n (not confirmed)

Too naive?

Use additional equation

$$\sum_{g \in G} x_g^2 = n \tag{2}$$

Every integral solution of (1) and (2) is $\{0, 1\}$ -solution

Size of complete subgraphs, Lovász and Schrijver bounds

Definition

Given a graph. Consider real symmetric matrix
$$A = (a_{ij})$$
 with
 $a_{ij} = \begin{cases} 1 \text{ or } \ge 1 \text{ arbitrary}, & \text{if } i = j \text{ or } (i,j) \text{ is edge} \\ \text{arbitrary}, & \text{otherwise} \end{cases}$

Theorem (Lovász, Schrijver)

S complete subgraph. If $\rho E - A$ positive semidefinite, then $|S| \leq \rho$.

Proof.

v = characteristic vector of S:

$$v^t (
ho E-A) v \geq 0,$$
 hence $ho v^t v \geq v^t A v = \sum_{i,j\in S} a_{ij} \geq |S|^2 = |S| v^t v$

Example

Fixed point free elements

 $S \subseteq G$ sharply transitive, $\pi(g) =$ number of fixed points of g(a) $\pi(g/h) = 0$ for all $g \neq h \in S$ (b) Pick any $s \in S$. Then Ss^{-1} is sharply transitive too Set $G^* = \{g \in G | \pi(g) = 0\}$. May assume $S \subseteq \{e\} \cup G^*$.

Plane of order 6

$$G = Sym(6)$$
 on $5 \cdot 6 = 30$ points.

- Vertices = G^*
- Edges = pairs (g, h) if $\pi(g/h) = 0$

S complete subgraph. Need to show: $|S| \leq 28$.