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Notation

Ω: Finite set

Sym(Ω): Symmetric group on Ω
Sym(n): Symmetric group on {1, 2, . . . , n}

De�nition

S ⊆ Sym(Ω) sharply transitive:

For any α, β ∈ Ω exactly one g ∈ S with αg = β

De�nition

S ⊆ Sym(Ω) sharply 2�transitive:

S sharply transitive on pairs (α1, α2), α1 6= α2



Observation by Ernst Witt:

Projective plane of order n ⇐⇒ S ⊆ Sym(n) sharply 2�transitive



Results by

Lorimer 1973 (three papers)

O'Nan 1985

Grundhöfer & Müller 2009

Müller & Nagy 2011

yield:

Theorem

Take S ⊆ Sym(n) sharply 2�transitive, set G = <S>. Then:

(a) n = pe , G ≤ AGLe(Fp), or

(b) G = Alt(n) or Sym(n), or

(c) G = M24



Pg = permutation matrix of g

From

S sharply transitive ⇐⇒
∑
g∈S

Pg =

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


we get

G ≤ Sym(Ω) contains sharply transitive set

⇐⇒

∑
g∈G xgPg =

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 has solution xg ∈ {0, 1}



Lemma (Contradicting subset lemma)

S ⊆ Sym(Ω) sharply transitive. B,C ⊆ Ω arbitrary. Then∑
g∈S
|B ∩ C g | = |B||C |

Proof.

Count triples (b, c , g) ∈ B × C × S with b = cg !



Alternating groups

Theorem

S ⊆ Alt(n) sharply 2�transitive. Then n ≡ 0 or 1 (mod 4)

Proof.

Set B = {(i , j) | i < j}, C = {(i , j) | i > j}

|B ∩ C g | = number of i < j with ig
−1

> jg
−1

is even

Thus

(
n(n − 1)

2
)2 = |B||C | =

∑
g∈S
|B ∩ C g |

is even



Symmetric block designs

Theorem (O'Nan)

PΓL(m, q), m ≥ 3, has no sharply 2�transitive subset

Remark

PΓL(m, q) is automorphism group of symmetric block design

Symmetric (ν, k , λ)�design

ν: number of points

k : size of a block

λ: size of intersection of two distinct blocks

(ν − 1)λ = k2 − k k(ν − k) = (k − λ)(ν − 1)



Theorem

Let Ω ∪ {x} be the points of symmetric (ν, k , λ)�design.
Then Aut(Design) contains no sharply transitive set on Ω.

Proof.

S sharply transitive on Ω =⇒ |S | = |Ω| = ν − 1

(i) B = C ⊆ Ω is block, hence |B ∩ C g | = k or λ ⇒
ak + (ν − 1− a)λ =

∑
g∈S |B ∩ C g | = |B||C | = k2 ⇒

a(k − λ) = k

(ii) B ∪ {x} = C ∪ {x} is block, hence |B ∩ C g | = k − 1 or λ− 1

b(k − 1) + (ν − 1− b)(λ− 1) = (k − 1)2 ⇒
b(k − λ) = ν − k

k − λ | ν
(k − λ)2 | k(ν − k) = (k − λ)(ν − 1)

}
⇒ k − λ = 1

Hence k = 1 or ν − 1 (trivial design)



Unfortunately . . .

∑
g∈G

xgPg =

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 (1)

has integral solutions in many interesting cases:

G = M24 of degree 23 · 24, or
G = Sym(n) of degree (n − 1)n (not con�rmed)

Too naive?

Use additional equation ∑
g∈G

x2g = n (2)

Every integral solution of (1) and (2) is {0, 1}�solution



Size of complete subgraphs, Lovász and Schrijver bounds

De�nition

Given a graph. Consider real symmetric matrix A = (aij) with

aij =

{
1 or ≥ 1 arbitrary, if i = j or (i , j) is edge

arbitrary, otherwise

Theorem (Lovász, Schrijver)

S complete subgraph. If ρE −A positive semide�nite, then |S | ≤ ρ.

Proof.

v = characteristic vector of S :

v t(ρE − A)v ≥ 0, hence

ρv tv ≥ v tAv =
∑
i ,j∈S

aij ≥ |S |2 = |S |v tv



Example

Fixed point free elements

S ⊆ G sharply transitive, π(g) = number of �xed points of g

(a) π(g/h) = 0 for all g 6= h ∈ S

(b) Pick any s ∈ S . Then Ss−1 is sharply transitive too

Set G ? = {g ∈ G |π(g) = 0}. May assume S ⊆ {e} ∪ G ?.

Plane of order 6

G = Sym(6) on 5 · 6 = 30 points.

Vertices = G ?

Edges = pairs (g , h) if π(g/h) = 0

S complete subgraph. Need to show: |S | ≤ 28.

Lovász: |S | ≤ ρmin = 28.004469596 . . .
Schrijver: |S | ≤ ρmin = 24.722717988 . . .
Indeed: |S | ≤ 17


