Sharply Transitive Sets of Permutations

Peter Müller (joint with Gábor Nagy)

Vienna, July 6th 2012

Notation

Ω: Finite set Sym(Ω): Symmetric group on Ω Sym(n): Symmetric group on $\{1, 2, \ldots, n\}$

Definition

 $S \subseteq Sym(\Omega)$ sharply transitive: For any $\alpha, \beta \in \Omega$ exactly one $g \in S$ with $\alpha^g = \beta$

Definition

 $S \subseteq Sym(\Omega)$ sharply 2-transitive:

S sharply transitive on pairs (α_1, α_2) , $\alpha_1 \neq \alpha_2$

Observation by Ernst Witt:

Projective plane of order n

$$
S \subseteq \mathsf{Sym}(n) \text{ sharply } 2\text{-transitive}
$$

Results by

- Lorimer 1973 (three papers)
- O'Nan 1985
- Grundhöfer & Müller 2009
- Müller & Nagy 2011

yield:

Theorem

Take
$$
S \subseteq Sym(n)
$$
 sharply 2-transitive, set $G = \langle S \rangle$. Then:
\n(a) $n = p^e$, $G \leq AGL_e(\mathbb{F}_p)$, or
\n(b) $G = Alt(n)$ or $Sym(n)$, or
\n(c) $G = M_{24}$

$$
P_g = \text{permutation matrix of } g
$$

From

S sharply transitive
$$
\iff
$$
 $\sum_{g \in S} P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$

we get

 $G \leq$ Sym (Ω) contains sharply transitive set

$$
\sum_{g \in G} x_g P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \text{ has solution } x_g \in \{0, 1\}
$$

Proof.

Count triples $(b, c, g) \in B \times C \times S$ with $b = c^g$!

Theorem

 $S \subseteq Alt(n)$ sharply 2-transitive. Then $n \equiv 0$ or 1 (mod 4)

Proof.

Set
$$
B = \{(i,j) | i < j\}
$$
, $C = \{(i,j) | i > j\}$

$$
|B \cap C^g| = \text{number of } i < j \text{ with } i^{g^{-1}} > j^{g^{-1}} \text{ is even}
$$

Thus

$$
\left(\frac{n(n-1)}{2}\right)^2 = |B||C| = \sum_{g \in S} |B \cap C^g|
$$

П

is even

Theorem (O'Nan)

PΓL(m, q), $m \geq 3$, has no sharply 2-transitive subset

Remark

 $P\Gamma L(m, q)$ is automorphism group of symmetric block design

Symmetric (ν, k, λ) -design

- ν : number of points
- k: size of a block

 $(\nu$

 λ : size of intersection of two distinct blocks

$$
(-1)\lambda = k^2 - k \qquad k(\nu - k) = (k - \lambda)(\nu - 1)
$$

Theorem

Let $\Omega \cup \{x\}$ be the points of symmetric (ν, k, λ) -design. Then Aut(Design) contains no sharply transitive set on Ω .

Proof.

S sharply transitive on $\Omega \Longrightarrow |S| = |\Omega| = \nu - 1$

(i)
$$
B = C \subseteq \Omega
$$
 is block, hence $|B \cap C^g| = k$ or $\lambda \Rightarrow$
\n $ak + (\nu - 1 - a)\lambda = \sum_{g \in S} |B \cap C^g| = |B||C| = k^2 \Rightarrow$
\n $a(k - \lambda) = k$

(ii)
$$
B \cup \{x\} = C \cup \{x\}
$$
 is block, hence $|B \cap C^g| = k - 1$ or $\lambda - 1$
\n $b(k-1) + (\nu - 1 - b)(\lambda - 1) = (k-1)^2 \Rightarrow$
\n $b(k-\lambda) = \nu - k$

$$
\begin{array}{ccc} k - \lambda & | & \nu \\ (k - \lambda)^2 & | & k(\nu - k) = (k - \lambda)(\nu - 1) \end{array} \bigg\} \Rightarrow k - \lambda = 1
$$

Hence $k = 1$ or $\nu - 1$ (trivial design)

Unfortunately ...

$$
\sum_{g \in G} x_g P_g = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \tag{1}
$$

has integral solutions in many interesting cases:

•
$$
G = M_{24}
$$
 of degree $23 \cdot 24$, or

g∈G

•
$$
G = \text{Sym}(n)
$$
 of degree $(n-1)n$ (not confirmed)

Too naive?

Use additional equation

$$
\sum_{g \in G} x_g^2 = n \tag{2}
$$

Every integral solution of (1) and (2) is $\{0, 1\}$ -solution

Size of complete subgraphs, Lovász and Schrijver bounds

Definition

Given a graph. Consider real symmetric matrix $A = (a_{ii})$ with $a_{ij} =$ $\int 1$ or ≥ 1 arbitrary, if $i=j$ or (i,j) is edge arbitrary, otherwise

Theorem (Lovász, Schrijver)

S complete subgraph. If $\rho E - A$ positive semidefinite, then $|S| \le \rho$.

Proof.

 $v =$ characteristic vector of S:

$$
v^{t}(\rho E - A)v \ge 0, \text{ hence}
$$

$$
\rho v^{t} v \ge v^{t} A v = \sum_{i,j \in S} a_{ij} \ge |S|^{2} = |S| v^{t} v
$$

Example

Fixed point free elements

 $S \subseteq G$ sharply transitive, $\pi(g) =$ number of fixed points of g (a) $\pi(g/h) = 0$ for all $g \neq h \in S$ (b) Pick any $s \in S$. Then Ss^{-1} is sharply transitive too Set $G^\star = \{g \in G | \pi(g) = 0\}$. May assume $S \subseteq \{e\} \cup G^\star.$

Plane of order 6

$$
G = Sym(6)
$$
 on $5 \cdot 6 = 30$ points.

- Vertices = G^*
- Edges = pairs (g, h) if $\pi(g/h) = 0$

S complete subgraph. Need to show: $|S| < 28$.

Lovász:	$ S \le \rho_{\text{min}} = 28.004469596...$
Schrijver:	$ S \le \rho_{\text{min}} = 24.722717988...$
Indeed:	$ S \le 17$