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Abstract

Let f be a polynomial with coefficients in the ring OK of integers
of a number field. Suppose that f induces a permutation on the
residue fields OK/p for infinitely many non-zero prime ideals p of OK .
Then Schur’s conjecture, namely that f is a composition of linear and
Dickson polynomials, has been proved by M. Fried. All the present
versions of the proof use Weil’s bound on the number of points of
absolutely irreducible curves over finite fields in order to get a Galois
theoretic translation and to finish the proof by means of finite group
theory.

This note replaces the use of this deep result by elementary argu-
ments.

Introduction

Let K be a number field, with OK its ring of integers. We say that a poly-
nomial f ∈ OK [X] is exceptional if the following holds. For infinitely many
non–zero prime ideals p of OK , f as a function on OK/p permutes the ele-
ments of this field. The aim of this note is
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Theorem 1. Let f ∈ OK [X] be an exceptional polynomial of degree n ≥ 2.
Let t be a transcendental over K, and let xi (i = 1, 2, . . . , n) be the roots
of f(X) − t in some algebraic closure of K(t). Then

∑n
i=1 ζ

ixi = 0 for a
primitive n-th root of unity ζ and a suitable numbering of the xi.

I. Schur had this assertion on page 128 in his paper [8] from 1923 for
K = Q. Of course there was no Weil bound (or sufficiently strong substitute)
available at that time. Schur used a quite complicated series of arguments,
involving the Lagrange inversion formula for power series and computations
with multinomial coefficients. Further, Schur’s method seems to work only
for K = Q. Our method works for any number field and is certainly more
transparent.

After having proved Theorem 1 and Corollary 3, we sketch how Schur’s
conjecture follows from that by easy standard arguments. For more details
about this consult [1] and [10].

An analogous result about exceptional polynomials over finite fields holds
provided that the characteristic p does not divide the degree of f . Namely
if f is exceptional under this assumption, then f is a composition of linear
and Dickson polynomials. Under this assumption, Theorem 1 holds without
change. However, the argument giving Corollary 3 does not work anymore.
Instead, it seems that one cannot remove the use of the Weil-bound. The
Appendix contains an account of that. M. Fried (who has a different proof)
asked the author to supply a proof of Theorem 4.

Proof of Theorem 1.

Let a be the leading coefficient of f . Replacing f(X) by an−1f(X/a) does
neither affect the hypothesis, nor the conclusion of Theorem 1, so henceforth
we assume that f ∈ OK [X] is monic. Denote by ζ a primitive n–th root
of unity. Let R be the ring extension of OK generated by ζ and 1

n
, so

R = OK [ζ, 1
n
]. Let z be a variable. We will work in the ring of formal

power series R[[z]]. If p is a prime ideal of OK , and S1, S2 ∈ R[[z]], then the
congruence S1 ≡ S2 (mod p) means that S1−S2 ∈ R[[z]]p. (We will use this
notion only when p does not divide n.) Also, a congruence modulo a power
of z has its obvious meaning. Set

fz(X) = znf(
X

z
)− 1.
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Lemma 2. For i = 1, 2, . . . , n there are yi ∈ R[[z]] with fz(yi) = 0 and
yi ≡ ζ i (mod z).

Proof. We have fz(X) ≡ Xn − 1 (mod z). For i = 1, 2, . . . , n set y
[0]
i = ζ i.

The usual proof of Hensel’s Lemma (see e.g. [5, XII.7.6]) shows that the

sequence y
[m]
i (m = 0, 1, . . . ) defined by y

[m+1]
i = y

[m]
i − fz(y

[m]
i )/f ′z(y

[m]
i )

converges to yi ∈ R[[z]], as fz(X)
f ′z(X)

= Xn+...
nXn−1+...

∈ 1
n
OK [[X]] ⊆ R[[X]]. Also,

yi ≡ ζ i (mod z) is a consequence of this proof.

([1] has a direct proof of this Lemma that goes like this. Substitute a
power series in z with unknown coefficients in the polynomial for X. Then,
inductively compute the coefficients of this power series.)

Write fz(X) =
∏n

i=1(X − yi) according to Lemma 2. Replace X by zY
to get

znf(Y )− 1 =
n∏
i=1

(zY − yi).

Now let p be a non-zero prime ideal of OK which does not divide n,
such that f is a permutation polynomial on OK/p. Let F ⊂ OK be a set
of representatives of OK/p, and set q = |OK/p|. Carry out the following
calculations in the ring R[[z]], modulo the ideals specified. We use the easy
fact that for U, V ∈ R[[z]]∏

a∈F

(Ua− V ) ≡ V U q−1 − V q (mod p).

As f induces a permutation on OK/p, we get∏
a∈F

(znf(a)− 1) ≡
∏
a∈F

(zna− 1)

≡ zn(q−1) − 1 (mod p).
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On the other hand,

∏
a∈F

(znf(a)− 1) ≡
∏
a∈F

n∏
i=1

(za− yi)

=
n∏
i=1

∏
a∈F

(za− yi)

≡
n∏
i=1

(yiz
q−1 − yqi ) (mod p).

Hence

n∏
i=1

(yiz
q−1 − yqi ) ≡ zn(q−1) − 1 (mod p).

Multiply by the unit c = 1/
∏n

i=1 y
q
i to give

n∏
i=1

(yi
zq−1

yqi
− 1) ≡ c(zn(q−1) − 1) (mod p). (1)

From Lemma 2 we get

yqi ≡ ζ iq (mod zq, p).

Hence

zq−1

yqi
≡ zq−1ζ−iq (mod z2(q−1), p).

Substitute this in (1) (using n ≥ 2):

n∏
i=1

(yiζ
−iqzq−1 − 1) ≡ −c (mod z2(q−1), p).

This yields
n∑
i=1

yiζ
−iq ≡ 0 (mod zq−1, p).

4



Now use the assumption that f is a permutation on the field OK/p of car-
dinality q for infinitely many non-zero prime ideals p of OK . At least one
residue of q modulo n, say r, thus appears infinitely often. So, using ζq = ζr

for these prime ideals (which furthermore should not divide n) shows that

n∑
i=1

yiζ
−ir ≡ 0 (mod zq−1, p)

holds for infinitely many p with q becoming arbitrarily large. For k = 0, 1, . . .
let bk be the coefficient of the power series expansion of

∑n
i=1 y

iζ−ir with
respect to z. We get that the the congruence bk ≡ 0 (mod p) holds in
R = OK [ζ, 1

n
] for infinitely many prime ideals which do not divide n. Hence

bk vanishes. So
∑n

i=1 y
iζ−ir = 0. Now set t = 1/zn and xi = yi/z. Then the

xi are the roots of f(X) − t, and the claim follows by replacing ζ−r with ζ
(note that r is prime to n).

The proof of Schur’s conjecture

The Galois theoretic translation relies on

Corollary 3. Let f ∈ OK [X] be an exceptional polynomial of degree n ≥ 2.
Let K be an algebraic closure of K and t a transcendental over K. Then the
Galois group G of f(X)− t over K(t) does not act doubly transitively on the
roots xi of f(X)− t.

Proof. We assume that G is doubly transitive, and aim for a contradiction.
Let V be the subspace of K

n
defined by V = {(u1, u2, . . . , un)|

∑
ui = 0}.

Identify the digits 1, 2, . . . , n with x1, x2, . . . , xn, and define an action of G
on V by (u1, u2, . . . , un)σ = (u1σ , u2σ , . . . , unσ) for σ ∈ G. As G permutes
the components of V doubly transitively, the module V is irreducible (see [3,
Theorem 4.3.4]; the change from C to K is immediate). Now

W = {(u1, u2, . . . , un) ∈ V |
∑

uixi = 0}

is a G-invariant subspace of V , as 0 =
∑
uixi = (

∑
uixi)

σ =
∑
uixiσ =∑

uiσ−1xi. But (ζ1, ζ2, . . . , ζn) from Theorem 1 is contained in W , so W = V .
But this gives x1 = x2 = · · · = xn, which of course is nonsense.
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We are still assuming that f is monic. To prove Schur’s conjecture write
f , which fulfills the hypothesis of Theorem 1, as a composition of indecompos-
able polynomials over K. These indecomposable constituents can be chosen
with coefficients in OK (see [10, 2.3]), they of course fulfill the hypothesis of
Theorem 1. So in order to prove Schur’s conjecture, one may assume from
the beginning that f is indecomposable over K. Then f is also indecompos-
able over K, see [1, Lemma 1], [10, 2.2(ii)]. As a consequence of Lüroth’s
Theorem, the Galois group G of f(X) − t over K(t) is primitive, see [1,
Lemma 2] or [10, 3.1]. On the other hand, G is not doubly transitive by
Corollary 3. But G contains an n-cycle (where n is the degree of f), which
by classical theorems of Schur and Burnside then forces n to be a prime and
G to be solvable, normalizing the Sylow n-subgroup, see [1] or [10]. The
original paper by Schur [8], [1], or [10] determine the shape of f from this.
Or see the Appendix. Thus, the main tools for proving the Schur conjecture
are the group theoretic theorems of Schur and Burnside for which [6] has
short self-contained proofs.

Appendix.

Let F be a finite field of characteristic p. Suppose that f ∈ F [X] is excep-
tional in the usual sense; f is a permutation polynomial on infinitely many
finite extensions E of F . Suppose that the degree of f is not divisible by p.
The method above allows us to draw the same conclusion as in Theorem 1.
However, the representation theoretic part in the proof of Corollary 3 fails in
general. The module V will be irreducible in general only under additional
assumptions like p > n, or n − 1 is a power of p (see [7]). We do not see
how to avoid the use of the Weil–bound in this situation. Anyway, the usual
argument (see [2]) gives that we are reduced to the same configuration as
in characteristic 0, namely that the Galois group of f(X) − t over F̄ (t) has
prime degree and is solvable. However, the possibility of wild ramification
requires different arguments to actually determine the polynomials. By the
following theorem then f is, up to composition with linear polynomials over
the algebraic closure of F , either cyclic or a Cebychev polynomial. From [10,
1.9(iii)] it then follows that f is, up to composition with linear polynomials
over F , a Dickson polynomial over F .

In the following let K be an algebraically closed field of any characteristic
p. We say that two polynomials a and b are linearly related, if a(X) =
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λ(b(µ(X))) with linear polynomials λ, µ ∈ K[X].

Theorem 4. Let f ∈ K[X] be a polynomial of prime degree n, with p not
dividing n (if p > 0). Suppose that the Galois group G of f(X) − t over
K(t) is solvable. Then either G = Cn (the cyclic group of degree n), and f
is linearly related to Xn, or G = Dn (the dihedral group of degree n), and f
is linearly related to the Cebychev polynomial Tn, which is uniquely defined
by Tn(z + 1

z
) = zn + 1

zn
.

Proof. Let x = x1, x2, . . . , xn be the solutions of f(X) = t, and let L =
K(x1, x2, . . . , xn) be the splitting field of f(X) − t over K(t). So G is
the Galois group of L|K(t). We view G as permutation group on the set
{x1, . . . , xn}, and denote by Hj the stabilizer of xj. As n is prime and G is
solvable, we get that G = N oH, where N is transitive of order n, and H is
any of the Hj. Set |H| = d. So [L : K(t)] = nd and [L : K(xj)] = d.

We use notions and results in valuation theory from [9] to first show that
L is a rational field. A different proof for that is contained in [4], and yet
another proof has been communicated to the author by M. Fried.

Let P be the set of places of L which are ramified over K(t). For a subfield
E of L let PE be the restriction of P to E. Denote by IP the inertia group
of a place P ∈ P over PK(t). Let g be the genus of L, and d(P |PK(t)) (or
d(P |PK(xj))) the different exponent of P over PK(t) (or over PK(xj)). The
Riemann–Hurwitz genus formula [9, III.4.12] for the extensions L|K(t) and
L|K(xj) gives

2(nd− 1 + g) =
∑
P∈P

d(P |PK(t)) (2)

and

2(d− 1 + g) =
∑
P∈P

d(P |PK(xj)) (3)

respectively. Subtract (3) for j = 1, 2, . . . , n from (2):

2(n− 1)(1− g) =
∑
P∈P

(d(P |PK(t))−
n∑
j=1

d(P |PK(xj))). (4)

We now compute the contributions in (4) from the places P .

7



The inertia group of P over PK(xj) of course is Hj ∩ IP .
First suppose that IP is intransitive. Then there is exactly one index

j0 such that IP ≤ Hj. (Note that IP being intransitive implies that IP ∩
H = 1, so IP maps injectively into the cyclic group HN/N ; therefore IP is
generated by a non-zero element which fixes exactly one letter.) If j = j0,
then PK(xj)|PK(t) is unramified, and therefore d(P |PK(xj)) = d(P |PK(t)) (e.g.
by [9, III.4.11(b)]). If however j 6= j0, then IP ∩ Hj = 1, so P |PK(xj) is
unramified, hence d(P |PK(xj)) = 0. Thus we have no contribution for these
places in (4).

Now suppose that IP is transitive. Then PK(xj)|PK(t) is totally ramified.
As p 6= n, the group IP does not contain a normal Sylow p-subgroup. This
implies that the inertia group IP is cyclic (see [9, III.8.6(e)]), hence IP =
N . In particular IP ∩ Hj = 1, hence P |PK(xj) is unramified. Thus (see [9,
III.4.11(b), III.5.1(b)]) d(P |PK(xj)) = 0 and (as the ramification is tame)
d(P |PK(t)) = |IP | − 1 = n − 1. The places Q ∈ P with QK(t) = PK(t) are
conjugate under the action of G, so their number is [G : IP ] = [G : N ] =
|H| = d. Hence these places Q together contribute d(n− 1) to (4). We get

2(n− 1)(1− g) = ld(n− 1),

where l is the number of places of K(t) which are totally ramified in K(x).
(Note that IP being transitive is equivalent to PK(t) being totally ramified in
K(x).)

We get 1 − g = ld/2. However, l ≥ 1, as f is a polynomial and so
the infinite place of K(t) is totally ramified in K(x). This gives g = 0 and
ld = 2. If l = 2, then there is a totally ramified finite place t 7→ a of K(t). So
f(X)− a is the n–th power of a linear polynomial, and the assertion follows
in this case.

For the remainder we assume d = 2. As L has genus 0, we have L = K(z)
for some z. The automorphism group of K(z) is PGL2(K). Denote the
image of

(
a b
c d

)
∈ GL2(K) in PGL2(K) by

[
a b
c d

]
. The action on K(z) is

given by sending z to az+b
cz+d

. It is easy to see that our dihedral group G of

order 2n is conjugate in PGL2(K) to the group generated by σ =
[
1 0
0 ζ

]
and

τ =
[
0 1
1 0

]
, where ζ is a primitive n–th root of unity. (To see this, first

note that the Sylow n-subgroup of G is diagonalizable. Then compute its
normalizer in PGL2(K).) The fixed field in K(z) of <σ, τ> is obviously
K(zn + 1

zn
). So replacing z by a linear fractional change, we may assume

that K(t) = K(zn + 1
zn

). Further, as the involutions in G are conjugate, we
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may further assume that the fixed field of τ , namely K(z + 1
z
), equals K(x).

Therefore λ(z + 1
z
) = x and zn + 1

zn
= µ(t) = µ(f(x)) for linear fractional

functions λ and µ. So
µ(f(λ(X))) = Tn(X).

It remains to show that λ and µ are indeed polynomials. First suppose that
µ is not a polynomial. Then, using the usual rules to compute with ∞, we
have µ(∞) = ω ∈ K. As Tn is not linearly related to Xn, there are distinct
ω1, ω2 ∈ K with Tn(ω1) = Tn(ω2) = ω. For i = 1, 2 we get

f(λ(ωi)) = µ−1(Tn(ωi)) = µ−1(ω) =∞.

Thus, as f is a polynomial,

λ(ω1) = λ(ω2) =∞,

contrary to ω1 6= ω2. So µ is a polynomial. If λ were not a polynomial, then
λ(∞) 6=∞, and setting X =∞ yields a contradiction.

Remark. The fact that p does not divide the degree n of f does not allow us
to argue as in characteristic 0. Indeed, the branch points of the polynomials
Tn (n ≥ 3) are 2 and −2. So in characteristic 2, these two branch points
collapse, and give wild ramification over 0.
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