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Primitive Monodromy Groups of Polynomials

PETER MÜLLER

Abstract. For a polynomial f ∈ C[X], let G be the Galois group of the
Galois closure of the field extension C(X)|C(f(X)). We classify the groups
G in the indecomposable case. For polynomials with rational coefficients

there are, besides four infinite series, only three more “sporadic” exam-
ples. In the Appendix we reprove the classical Theorems of Ritt about
decompositions of polynomials using the group-theoretic setup.

1. Introduction

Let f be a polynomial of degree n with complex coefficients. In a fixed alge-

braic closure of the field of rational functions C(t) consider the field Ω which is

generated over C by the n different elements xi fulfilling f(xi) = t. Then the

Galois group G = Gal(Ω|C(t)) permutes transitively the elements xi. This group

G is called the monodromy group of f . It is natural to ask what groups G can

occur this way. A polynomial is called indecomposable if it cannot be written as a

composition of two non–linear polynomials. In section 2 we classify the possible

monodromy groups for indecomposable polynomials, there are four infinite series

and twelve more cases which do not belong to these series. Section 3 is about

the question of what groups occur as monodromy groups of polynomials with

rational coefficients. The result is

Theorem. Let f ∈ Q[X] be indecomposable and let G be its monodromy

group. Then G is either alternating, symmetric, cyclic, or dihedral or G is

PGL2(5), PΓL2(8), or PΓL2(9). In the latter three cases f is, up to composition

with linear polynomials, uniquely given by X4(X2 + 6X + 25), 9X9 + 108X7 +

72X6+486X5+504X4+1228X3+888X2+1369X or (X2−405)4(X2+50X+945).

Some remarks about the appearance of monodromy groups are in order: Es-

pecially M. Fried (see [7], [8], [9], and his papers cited in [11]) exhibited the
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importance of these groups in discussing several arithmetical questions about

polynomials. That is many questions depend merely on the monodromy group

rather than on the full information given by a polynomial. One of these problems

is a question of Davenport, which asks to classify the pairs of polynomials with

integer coefficients such that the value sets on Z are the same modulo all but

finitely many primes. See [11, 19.6], [9], and [20].

We merely classify the monodromy groups in the indecomposable case. By

a Theorem of Ritt (see [21] or [3]) the study of arbitrary polynomials can be

reduced to these polynomials to some extent. For instance (over fields of char-

acteristic 0) any two decompositions of a polynomial into indecomposable poly-

nomials have the same number of factors, and the degrees are the same up to

a permutation. Ritt even gives an algorithm how to pass from one composi-

tion to the other one by interchanging and “twisting” consecutive factors. In

the Appendix, we give a concise account of this, employing the group-theoretic

setup.

I wish to thank H. Völklein for drawing my attention to this question. I

thank B. H. Matzat for informing me about [17] where he already computed

the polynomials for the groups PΓL2(8) and PΓL2(9). He also noted that I

erroneously excluded PΓL2(8) in an earlier version of this paper.

2. Primitive Monodromy Groups

2.1 Notation and Definitions. We retain the notation from the Introduc-

tion. For technical reasons we need a further description of the monodromy

group of f ∈ C[X] (deg f = n):

Consider the branched n-fold covering f : P1 → P1. Let S = {p1, p2, . . . , pr}
be the set of branch points, where pr is the point at infinity. Fix a point a in

P1 \ S. Then π1 = π1(P1 \ S, a) acts on f−1(a) by lifting of paths. The homo-

morphic image of π1 in Sn ∼= Sym(f−1(a)) will also be denoted by G, as this

group can be identified with the monodromy group defined in the Introduction,

with G acting in the same way on the elements xi as on the points of the fiber

f−1(a). This identification relies on the isomorphism between the group of cov-

ering transformations of a Galois cover of compact connected Riemann surfaces

and the Galois group of the corresponding extension of fields of meromorphic

functions on these surfaces.

In this section we use the geometric description of G from above, i.e. we view

G as a subgroup of Sn via identification of {1, 2, . . . , n} with f−1(a).

Pick r generators λi of π1(P1 \ S, a) such that λi winds only around pi and

λ1λ2 · · ·λr = 1 (this is a so–called “standard homotopy basis”). These r gener-

ators of π1(P1 \ S, a) then yield generators σ1, σ2, . . . , σr of G with

σ1σ2 · · ·σr = 1 .

As pr = ∞ ramifies completely, σr is an n-cycle.
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This tuple (σ1, . . . , σr) is called the branch cycle description of the cover

f : P1 → P1.

For σ ∈ Sn denote by indσ the quantity ‘n − the number of orbits of 〈σ〉’.
The main constraint is imposed by the Riemann Hurwitz genus formula

r∑
i=1

indσi = 2(n− 1) .

For an elementary argument yielding this latter relation confer [7, Lemma 5].

Conversely, a finite permutation group having a set of generators fulfilling the

above restrictions is the monodromy group of a suitable polynomial by Riemann’s

existence Theorem.

So we are reduced to a completely group–theoretic question. The purpose of

this section is to give a complete classification in the indecomposable case. The

corresponding question for rational functions instead of polynomials is much

tougher and still open, see [15] and [1].

2.2 Notations and Main Result. Let G be a permutation group acting

on n elements. We consider the following condition on G, which we later refer

to as (*).

Condition (*). G is generated by σ1, σ2, . . . , σs (σi 6= 1) such that σ1σ2 · · ·σs

is an n-cycle and
∑s

i=1 indσi = n− 1 .

It is obvious that the situation in (*) is equivalent to the configuration of 2.1.

Suppose (*) holds. Using ab = bab we see that we may assume |σ1| ≤ |σ2| ≤
· · · ≤ |σs|, where |σ| denotes the order of σ. Following Feit in [4] we say that G

is of type (|σ1|, |σ2|, · · · , |σs| : n).
Denote by Cp and Dp the cyclic and dihedral groups of degree p, respectively.

Let PGLk(q) be the projective linear group over the field with q elements, act-

ing on the projective space of dimension k − 1. This group, together with the

component–wise action of Aut(Fq) on the projective space, generates the semi-

linear group PΓLk(q). The Mathieu groups of degree n are labelled by Mn. In

this section we prove

Theorem. Let G be the monodromy group of a polynomial f ∈ C[X]. Then

G is one of the following groups. Conversely, each of these groups occurs.

(i) Cp of type (p : p), p a prime.

Dp of type (2, 2 : p), p an odd prime.

(ii) PSL2(11) of type (2, 3 : 11)

PGL3(2) of types (2, 3 : 7), (2, 4 : 7), and (2, 2, 2 : 7)

PGL3(3) of types (2, 3 : 13), (2, 4 : 13), (2, 6, 13), and (2, 2, 2 : 13)

PGL4(2) of types (2, 4 : 15), (2, 6 : 15), and (2, 2, 2 : 15)

PΓL3(4) of type (2, 4 : 21)

PGL5(2) of type (2, 4 : 31)

(iii) An (n odd) and Sn of many, not reasonably classifiable types.
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M11 of type (2, 4 : 11)

M23 of type (2, 4 : 23)

PGL2(5) of type (2, 4 : 6)

PGL2(7) of type (2, 3 : 8)

PΓL2(8) of types (2, 3 : 9) and (3, 3 : 9)

PΓL2(9) of type (2, 4 : 10)

Remark. In [19, 2.6.10] we get, as a side product to the Hilbert–Siegel prob-

lem, a classification of the monodromy groups of the rational functions f(X)/X

where f is an arbitrary polynomial f ∈ C[X] with f(0) 6= 0. The list is as

follows: AGL1(p) with p ∈ {2, 3, 5, 7}, AΓL1(8), AGL3(2), AΓL2(4), AGL4(2),

AGL5(2), AΓL1(9), AGL2(3), An (n even), Sn, PSL2(5), PGL2(5), PSL2(7),

PGL2(7), PSL2(13), M11 with n = 12, M12, M24.

There are also results about monodromy groups of indecomposable polynomi-

als with coefficients in a finite field or in an algebraically closed field of positive

characteristic. In [14] is a classification of the primitive groups which meet a

necessary condition for being the monodromy group of a polynomial. The main

constraint comes from the ramification at infinity. The genus condition however

is hardly to use.

2.3 About the Proof. Let f ∈ C[X] be a polynomial and G its monodromy

group. As a consequence of Lüroth’s Theorem, f is indecomposable if and only

if G is a primitive group (i.e. G does not act on a non–trivial partition of the

underlying set), see [12, 3.4].

Now let f be indecomposable and σ1, . . . , σs a generating system ofG fulfilling

(*). Set Z = 〈σ1σ2 · · ·σs〉, then Z is a transitive cyclic subgroup of G. Together

with the primitivity of G, we get by classical results of Schur and Burnside (see

[22, 11.7 and 25.2]) that G ≤ AGL1(p) (p a prime) or G is doubly transitive.

Let A be a minimal normal subgroup of G. If A is elementary abelian, then

G ≤ AGL1(p) or G ≤ S4, see the proof of [16, Satz 5]. The non–solvable doubly

transitive groups with a cyclic transitive subgroup are known by the classification

of the finite simple groups and listed in [5, 4.1]. Thus we have to investigate

the following groups G.

Cp ≤ G ≤ AGL1(p), An (n odd), Sn, M11, M23, PSL2(11) of degree

11, and (not all) groups between PSLm(q) and PΓLm(q) (with m ≥ 2,

q a prime power) in its action on the projective space.

The cases G = PSL2(11) with n = 11 and the semi–projective linear groups

with m ≥ 3 have been investigated by Feit in [4]. (These are just the cases

where G admits two inequivalent doubly transitive representations with Z acting

transitively in both of them.) However, his proof needs to be modified, as [4,

3.4] is wrong. In the following we supply an alternative treatment in the case

when [4, 3.4] does not work. I thank Feit for a discussion about this.
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We will discuss the different classes of groups separately. The case Cp ≤ G ≤
AGL1(p) is quite easy and left to the reader.

2.4 Counting Orbits. Some more notation: For σ ∈ G denote by o(σ)

the number of cycles of σ (thus n = o(σ) + indσ). Let f(σ) be the number of

elements fixed by σ. For later use we derive an elementary relation between o(σ)

and the number of fixed points of powers of σ: For this denote by ai the number

of i-cycles of σ. Clearly

f(σr) =
∑
i|r

i · ai

for every positive integer r. Möbius inversion yields

r · ar =
∑
k|r

µ(
r

k
)f(σk) .

Using
∑

t|m
µ(t)
t = ϕ(m)

m and o(σ) = a1 + a2 + . . . we get the basic relation

(1) o(σ) =
1

|σ|
∑
k| |σ|

f(σk)ϕ(
|σ|
k
) .

2.5 The Mathieu Groups. For the two candidates M11 and M23 we use

the Atlas of the finite simple groups [2] and its notation. Besides other things

the character tables in this source allow us to compute the ind–function. Let

us start with G = M11: First we get indσi ≥ 4, hence s = 2 by (*). We see

that σ1 ∈ 2A and σ2 ∈ {3A, 4A}. Let χ1, χ2,. . . ,χh be the irreducible characters

of G and C1, C2,. . . ,Ch be the conjugacy classes of G. For an x ∈ Ck denote

by N(i, j; k) the number of solutions of x = uv with u ∈ Ci and v ∈ Cj . It is

well–known (see e.g. [13, 4.2.12]) that

(2) N(i, j; k) =
|Ci| · |Cj |

|G|

h∑
m=1

χm(Ci)χm(Cj)χm(Ck)

χm(1)

We want to exclude the case σ2 ∈ 3A: Pick an element g ∈ G of order 11. Using

(2) we see that there are exactly 11 solutions of g = uv with u ∈ 2A, v ∈ 3A.

Since 〈g〉 is transitive and abelian g does not centralize u (and v). Thus 〈g〉 acts
fixed–point–freely on the pairs (u, v) with g = uv. So there is essentially one

solution to g = uv with u ∈ 2A and v ∈ 3A. Now [2] tells us that G contains

a transitive subgroup isomorphic to H ∼= PSL2(11). Again using (2) and [2] we

see that there are elements g, u, and v in H of orders 11, 2, and 3 respectively

with g = uv. The previous consideration shows that a conjugate of 〈σ1, σ2〉 is a
subgroup of H, therefore σ1 and σ2 do not generate G.

Now consider the case σ2 ∈ 4A. Set H = 〈σ1, σ2〉. If H 6= G then H ≤
PSL2(11), as PSL2(11) is the only maximal and transitive subgroup of M11 by

[2]. However, PSL2(11) does not contain an element of order 4. Thus σ1 and σ2

generate G. An explicit example is

σ1 = (4, 5)(6, 7)(8, 9)(11, 11), σ2 = (1, 11, 2, 9)(8, 3, 5, 7).



6 PETER MÜLLER

We treat the case G = M23 quite similarly: Here we get σ1 ∈ 2A, σ2 ∈ 4A, and

H = 〈σ1, σ2〉 with σ1σ2 an 23-cycle. The only transitive and maximal subgroup

of G has order 253, see [2]. Thus σ1 and σ2 generate G. Again we give one

explicit example:

σ1 = (8, 9)(10, 11)(12, 13)(14, 15)(16, 17)(18, 19)(20, 21)(22, 23),

σ2 = (2, 14)(17, 19)(1, 10, 16, 4)(8, 13, 15, 6)(12, 20, 11, 7)(3, 9, 5, 22)

2.6 PSL2(q) ≤ G ≤ PGL2(q). The distinction between the projective case

and the non–projective semilinear case simplifies the somewhat tedious way

through the estimations. We assume q ≥ 5 (because PGL2(4) ∼= A5). Let p

be the prime divisor of q.

For the case q = 11 and G of degree 11 see [4, 4.3]. Thus assume from now

on that G acts naturally on the projective line.

Pick a σ ∈ G. There are three cases:

(i) σ has at least 2 fixed points. Then indσ = (q − 1)(1 − 1
|σ| ) by simple

linear algebra.

(ii) σ has exactly one fixed point. Then indσ = q(1− 1
|σ| ) and |σ| = p.

(iii) σ has no fixed points. Denote by σ̂ a preimage of σ in GL2(q). Then 〈σ̂〉
acts irreducibly on F2

q, hence Fq[σ̂] is a quadratic field extension of Fq by

Schur’s Lemma. We deduce that 〈σ〉 acts fixed–point–freely on P1(q),

thus indσ = (q + 1)(1− 1
|σ| ).

In all three cases we obtain indσ ≥ (q − 1)(1 − 1
|σ| ) ≥ 1

2 (q − 1). Therefore

s = 2 by (*). As G contains the non–solvable group PSL2(q), σ2 cannot be an

involution (recall the monotony of the orders of σi). This shows (again using

(*)) (q − 1)(1− 1
2 + 1− 1

3 ) ≤ q, hence q ≤ 7.

Suppose q = 5. We have indσ ∈ {2, 3}, indσ = 4, or indσ ∈ {3, 4} if σ is of

type (i), type (ii), or type (iii) respectively. Thus both σ1 and σ2 are of type (i)

with |σ1| = 2, |σ2| = 4. One readily checks (see the arguments in the Mathieu

group case) that σ1 and σ2 generate a group containing PSL2(5). Since σ2 is

an odd permutation, they actually generate PGL2(5). An explicit example is

σ1 = (1, 2)(3, 4), σ2 = (3, 2, 5, 6).

Now suppose q = 7. Similarly as above we get |σ1| = 2, |σ2| = 3, and f(σ1) =

f(σ2) = 2. So σ1 is an odd permutation, hence G = PGL2(7). This case occurs

as well, an example is provided by σ1 = (1, 2)(3, 4)(5, 6), σ2 = (1, 3, 6)(2, 7, 8).

2.7 PSLm(q) ≤ G ≤ PΓLm(q). Set q = pe with a prime p. This case is even

for m = 2 more complicated than the projective linear case since there are many

more types of possible cycle decompositions. In particular a fixed–point–free

element need not generate a fixed–point–free group.

Write ΓLm(q) = GLm(q)oΓ with Γ = Aut(Fq). Let ΓLm(q) act from the left

on Fm
q . For σ ∈ PΓLm(q) denote by σ̂ a preimage of σ in ΓLm(q). Feit [6] told

me a special case of the following lemma.

Lemma. Write σ̂ = gγ with g ∈ GLm(q) and γ ∈ Γ. Let e/i be the order of
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γ. Then f(σ) ≤ pim−1
pi−1 .

Proof. Set σ̂e/i = h ∈ GLm(q). If σ̂v = αv for v ∈ Fm
q \ {0}, α ∈ Fq, then

hv = N(α)v, where N : Fq → Fpi denotes the norm.

First suppose that h is a scalar. If σ̂w = βw for some w ∈ Fm
q \ {0}, β ∈ Fq,

then hw = N(β)w and therefore N(α) = N(β). By Hilbert’s Theorem 90 there

is a ζ ∈ F×
q with α/β = ζγ/ζ. From σ̂ζw = ζγ σ̂w = ζγβw = αζw we conclude

that every σ̂–invariant Fq–line L contains an element u 6= 0 with σ̂u = αu. There

are exactly pi−1 such points on L. One easily sees that a basis of the Fpi–space

{v ∈ Fm
q | σ̂v = αv} is linearly independent over Fq. This proves the assertion.

Now suppose that h is not a scalar. Let η1, . . . , ηs be those elements in

Fpi which are eigenvalues of h. Let Vk be the eigenspace of h with eigenvalue

ηk. Note that h|Vk
is the smallest power of σ̂|Vk

which lies in AutFq (Vk). Set

dk = dimFq (Vk). Every σ̂–invariant line lies in one of these subspaces. The

preceding consideration yields

f(σ) ≤
∑ pidk − 1

pi − 1
.

From (xδ1 − 1) + (xδ2 − 1) ≤ xδ1+δ2 − 1 for x ≥ 1 and δ1, δ2 ≥ 0 and
∑

dk ≤ m

we get the assertion.

Proposition. Set σ̂ = gγ with g ∈ GLm(q) and γ ∈ Γ. Let e/i be the order

of γ. Set r = 1 if e = i. Otherwise let r be the smallest prime divisor of e/i.

Then

indσ ≥ (1− 1

|σ|
)(qm−1 − 1) + (1− 1

e/i
)(
qm−1 − 1

q − 1
− qm/r − 1

q1/r − 1
+ 1).

Proof. We use the formula in 2.4, together with the well–known relation∑
t|m ϕ(t) = m. If σk /∈ PGLm(q), then we estimate the number of fixed points

with the preceding lemma. Note that γk has the order e
i(e/i,k) = e

(e,ik) , where

(a, b) denotes the greatest common divisor of a and b. If however 1 6= σk ∈
PGLm(q), then clearly f(σ) ≤ 1

q−1 (q
m−1 − 1 + q − 1) = qm−1−1

q−1 + 1.
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|σ| · o(σ) =
∑
k

∣∣|σ|
e
i
|k

f(σk)ϕ(
|σ|
k
) +

∑
k

∣∣|σ|
e
i
-k

f(σk)ϕ(
|σ|
k
)

≤
∑
k

∣∣|σ|
e
i
|k

(
qm−1 − 1

q − 1
+ 1) · ϕ( |σ|

k
) + (

qm − 1

q − 1
− qm−1 − 1

q − 1
− 1)ϕ(1)+

∑
k

∣∣|σ|
e
i
-k

p(e,ik)m − 1

p(e,ik) − 1
ϕ(

|σ|
k
)

≤
∑
k

∣∣|σ|
e
i
|k

(
qm−1 − 1

q − 1
+ 1) · ϕ( |σ|

k
) + qm−1 − 1 +

∑
k

∣∣|σ|
e
i
-k

pem/r − 1

pe/r − 1
ϕ(

|σ|
k
)

=
∑
k

∣∣|σ|
e
i
|k

(
qm−1 − 1

q − 1
+ 1− qm/r − 1

q1/r − 1
) · ϕ( |σ|

k
) +

qm/r − 1

q1/r − 1
+ qm−1 − 1

=
∑
t| |σ|

e/i

(
qm−1 − 1

q − 1
+ 1− qm/r − 1

q1/r − 1
) · ϕ(t) + qm/r − 1

q1/r − 1
+ qm−1 − 1

= (
qm−1 − 1

q − 1
+ 1− qm/r − 1

q1/r − 1
)
|σ|
e/i

+
qm/r − 1

q1/r − 1
+ qm−1 − 1,

from which the assertion follows.

If i < e, then we get, using 2 ≤ r ≤ e/i ≤ |σ|,

Corollary. Let σ ∈ PΓLm(q) \ PGLm(q).

If m ≥ 4, then

indσ ≥ (1− 1

|σ|
)(qm−1 − 1) +

1

2
(
qm−1 − 1

q − 1
− qm/2 − 1

q1/2 − 1
+ 1).

If m ∈ {2, 3}, then

indσ ≥ (1− 1

|σ|
)(qm−1 − q1/2).

Now we are prepared to discuss condition (*). Let σ′
1, . . . , σ

′
s ∈ G ≤ PΓLm(q)

be a system as in (*).

If not all the σ′
i are involutions, then assume without loss that σ′

s is not an

involution, and set σ1 = σ′
1σ

′
2 . . . σ

′
s−1, σ2 = σ′

s.

If all the σ′
i are involutions, then s ≥ 3, as G is not dihedral. By conjugation

and operations of the kind . . . , a, b, . . . 7→ . . . , b, ab, . . . we may assume that
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σ′
s−1 and σ′

s do not commute. Then σ′
s−1σ

′
s is not an involution, and we set

σ1 = σ′
1σ

′
2 · · ·σ′

s−2, σ2 = σ′
s−1σ

′
s.

In either case we have σ1, σ2 ∈ G which not both are involutions, such that

indσ1+indσ2 ≤ n−1 (with n = (qm−1)/(q−1)) and such that σ1σ2 is an n–cycle.

(As to the inequality for the index note that indσ is also the minimal number of

transpostions required to write σ as a product with. Thus indστ ≤ indσ+ind τ .

From this we actually get indσ1 + indσ2 = n− 1.)

If σ1, σ2 ∈ PGL2(q), then q = 5 or 7 as in section 2.6. If σ1, σ2 ∈ PGLm(q)

for m ≥ 3, then proceed as in [4]. The key tool [4, 3.4] is correct in this case.

From now on suppose that one of the elements σ1, σ2 is not contained in

PGLm(q). As a consequence of Zsigmondy’s Theorem and Schur’s Lemma, we

get that the n–cycle σ1σ2 is contained in PGLm(q) except possibly form = 2, q =

8, see the proof of [4, 5.1]. The case m = 2, q = 8 is excluded until otherwise

stated.

Thus σ1 and σ2 have the same order e/i ≥ 2 modulo PGLm(q). In particular

|σ1| and |σ2| have a common divisor > 1.

First suppose m ≥ 4. Using n− 1 ≥ indσ1 + indσ2 and the Corollary we get

(2) q
qm−1 − 1

q − 1
≥ ((1− 1

2
) + (1− 1

4
))(qm−1 − 1) + (

qm−1 − 1

q − 1
− qm/2 − 1

q1/2 − 1
+ 1).

As the last summand on the right side is positive, we get

q
qm−1 − 1

q − 1
≥ 5

4
(qm−1 − 1),

hence q = 4. Now we use q = 4 in (2), and easily get the contradiction m ≤ 3.

Now suppose m = 3. Similarly as above we get

q(q + 1) ≥ 5

4
(q2 − q1/2),

hence q = 4. For a treatment of G ≤ PΓL3(4) confer [4].

From now on suppose m = 2. Without loss we assume |σ1| ≤ |σ2|. As above

we get

q ≥ 5

4
(q − q1/2),

hence q ≤ 25.

If q = 25, then |σ1| = 2, |σ2| = 4, and σ2
2 ∈ PGL2(25), hence f(σ2) ≤ f(σ2

2) ≤
2. From 2.4 we get indσ2 ≥ 18, hence indσ1 ≤ 7, contrary to the Corollary.

Now suppose q = 16. We quickly get |σ1| = 2 and |σ2| = 4. As σ1 and σ2 have

the same order modulo PGL2(16), we get σ2
2 ∈ PGL2(16). Now σ2

2 has exactly

one fixed point, hence so does σ2. It follows indσ2 = 12, hence indσ1 = 4,

contrary to the Corollary.
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Now suppose q = 9. We get s = 2, for if s ≥ 3 then s = 3 and the σi are

fixed–point–free involutions. However PGL2(9) does not contain fixed–point–free

involutions, contrary to σ1σ2σ3 ∈ PGL2(9).

So we get |σ1| = 2 and |σ2| = 4. An explicit example is σ1 = (2, 7)(5, 6)(8, 10),

σ2 = (1, 4, 9, 2)(3, 5, 7, 10).

For the last case G = PΓL2(8) we get from the index estimations s = 2 and

(|σ1|, |σ2|) = (2, 3) or (3, 3). Explicit examples are σ1 = (2, 3)(4, 5)(6, 7)(8, 9),

σ2 = (7, 5, 8)(1, 9, 3) and σ1 = (4, 5, 6)(7, 8, 9), σ2 = (5, 9, 2)(6, 3, 1).

As PΓL2(4) ∼= S5 we do not discuss q = 4.

3. Rationality Questions

3.1. Using a special case of the so–called branch cycle argument (for a short

proof see [10]), we get the following

Lemma. Let f ∈ Q[X] be a polynomial of degree n. Let G be the monodromy

group of f , and let σ be an n–cycle as in (*). Let Ĝ be the normalizer of G in

Sn. Then any two generators of Z = 〈σ〉 are conjugate in Ĝ.

We now prove the Theorem from the Introduction.

We note that f is indecomposable even over C by [12, 3.5]. Thus we apply

our result from section 2.2. As for type (i), consider the polynomials f(x) = xp

or f ∈ Q[X] defined by f(z+ 1
z ) = zp+ 1

zp to get the cyclic group or the dihedral

group, both of degree p.

If f is of type (ii), then Fried showed ([8, Section 3]) that f /∈ Q[X]. We

remark that Fried did this without actually knowing the occurring groups (even

to prove that there are only finitely many examples seems to require the classi-

fication of the finite simple groups).

Now we discuss the type (iii). The group Sn is in some sense the generic case.

To get this group take for instance f(X) = Xn−X. The discriminant of f(X)−t

is a polynomial of degree n−1 in t, and the roots of the discriminant are precisely

the finite branch points of f : P1 → P1. In this case the discriminant has n− 1

different simple roots, therefore σi is a transposition for i = 1, . . . , r− 1, see 2.1.

Thus G is a transitive group generated by transpositions, and such a group is

symmetric.

Similarly we get the alternating group. Choose f such that its derivative

equals (Xm − 1)2, thereby 2m + 1 = n. Denote by S the set of mth roots of

unity. Then the discriminant of f(X)− t equals, up to a multiplicative constant,

∆(t) =
∏

ζ∈S(t− f(ζ))2. Note that ∆ has m different roots, each of multiplicity

2. Now f ′(ζ) = f ′′(ζ) = 0 6= f ′′′(ζ) for each ζ ∈ S. This shows that (in the

notation of 2.1) r = m + 1 and each σi (i = 1, . . . , r − 1) is a 3-cycle. So the

transitive group G is generated by 3-cycles, thus G = An (see [18, lemme 1 in

4.]).

Next we exclude M11, M23 and PGL2(7) using the Lemma from above. Ob-

serve that every automorphism of these groups is inner, hence Ĝ = G in these
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cases. To exclude the two Mathieu groups it suffices to see that no element of

order 11 (resp. 23) is conjugate to its inverse. This can be deduced from [2].

Suppose that PGL2(7) meets the conclusion of the Theorem. As Z has 4

generators, 8 · 4 = |NG(Z)| does divide 7 · 48 = |G|, a contradiction.

For the group PΓL2(8) we got two different types of branch cycle descriptions.

We show that the case with |σ1| = 2, |σ2| = 3 does not occur. Of course

σ1 ∈ PGL2(8) and σ2 /∈ PGL2(8). Thus the 9–cycle σ = σ1σ2 is not contained

in PGL2(8). Thus σ has order 3 modulo PGL2(8), and therefore cannot be

conjugate to its inverse.

It remains to show that PGL2(5), PΓL2(8) of type (3, 3 : 9), and PΓL2(9) are

monodromy groups of polynomials with rational coefficients and to exhibit the

corresponding polynomials.

3.2 The group PGL2(5). We know from our result in section 2, that there

is a polynomial f ∈ C[X] with monodromy group PGL2(5). We just compute it,

and it will turn out that it can be chosen with rational coefficients. Recall the

definition of the generators σ1, . . . , σs of the monodromy group. In our case we

have (up to simultaneous conjugation with elements in S6 and reordering the σ’s)

σ1 = (1, 2)(3, 4) and σ2 = (3, 2, 5, 6); that is a consequence of the considerations

in 2.6.

Let f be monic, and let 0 be the branch point corresponding to σ2. Without

loss, above 0 lies the 4-fold point 0, and the simple points κ1 and κ2 (κ1, κ2 6= 0).

We have κ1 + κ2 6= 0, for otherwise f were a composition with a quadratic

polynomial. We may assume κ1 + κ2 = −6. Then f(X) = X4(X2 + 6X + p)

with p ∈ C. The finite branch points of f are the zeroes of f ′. We have f ′(X) =

2X3(3X2 +15X +2p). Let λ1 and λ2 be the zeroes of h(X) = 3X2 +15X +2p.

They are different, and have the same images under f . Write f = q · h + r

with polynomials q and r, such that deg r ≤ 1. Then f(λi) = r(λi), hence

r(λ1) = r(λ2). Thus r is a constant. On the other hand, by dividing the

polynomials, we get that the coefficient of X in r is 8/3(p− 75/8)(p− 25). The

choice p = 75/8 yields 3125/128 as the second finite branch point. However,

f(X) − 3125/128 = 1/128(16X3 − 24X2 + 30X − 25)(2X + 5)3 shows that the

ramification above this point is the wrong one. Thus p = 25.

3.3 The groups PΓL2(8) and PΓL2(9). The polynomials have been com-

puted by Matzat. See [17, 8.5] for PΓL2(8) and [17, 8.7] for PΓL2(9).

Appendix: The Theorems of Ritt

The setup from section 2.1 allows for short proofs of the classical Theorems of

Ritt about decompositions of polynomials. Throughout this section we deal with

polynomials with complex coefficients. Via model theory the assertions hold for

any algebraically closed field of characteristic 0. Using [12, 3.5] one readily gets

that R.1 and R.2 hold for arbitrary fields of characteristic 0. By a maximal
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decomposition of a polynomial f we mean a decomposition f = f1 ◦ f2 ◦ · · · ◦ fr
where the fi are non–linear and indecomposable.

Theorem R.1 (Ritt). Let f = f1 ◦ · · · ◦ fr = g1 ◦ · · · ◦ gs be two maximal

decompositions of a polynomial f ∈ C[X]. Then r = s and the degrees of the

fi’s are a permutation of the degrees of the gi’s. Furthermore, one can pass from

one decomposition to the other one by altering two adjacent polynomials in each

step.

From the latter part of this Theorem the question arises when a◦b = c◦d with

indecomposable polynomials a, b, c, and d. Recall that the Cebychev polynomial

Tn is defined by Tn(Z + 1/Z) = Zn + 1/Zn.

Theorem R.2 (Ritt). Let a, b, c, and d be non–linear indecomposable poly-

nomials such that a ◦ b = c ◦ d. Assume without loss deg a ≥ deg c. Then there

exist linear polynomials L1, L2, L3, and L4 such that one of the following holds.

(1)

a = c ◦ L1, b = L−1
1 ◦ d, (the uninteresting case).

(2)

L1 ◦ a ◦ L−1
2 = Xk · t(X)m, L2 ◦ b ◦ L3 = Xm

L1 ◦ c ◦ L−1
4 = Xm, L4 ◦ d ◦ L3 = Xk · t(Xm)

for a polynomial t.

(3)

L1 ◦ a ◦ L−1
2 = Tm, L2 ◦ b ◦ L3 = Tn

L1 ◦ c ◦ L−1
4 = Tn, L4 ◦ d ◦ L3 = Tm .

for Cebychev polynomials Tm and Tn.

Let f be a polynomial with complex coefficients, and let x be a transcendental

over C. Set t = f(x), and let Ω be the Galois closure of C(x)|C(t). Let G =

Gal(Ω|C(t)) be the monodromy group of f , and let U be stabilizer of x. We view

two decomposition of f as equivalent, if they differ just by linear twists (like (1)

in R.2). As an easy consequence of Lüroth’s theorem, we see that the equivalence

classes of maximal decompositions of f correspond bijectively to the maximal

chains of subgroups from U to G. If f = f1 ◦ · · · ◦ fr is such a decomposition,

then the associated chain of subgroups is U = U0 < U1 < . . . < Ur−1 < Ur = G,

where Ui is the stabilizer of f1(f2(· · · (fi(x) · · · )). Then Theorem R.1 is a direct

consequence of

Theorem R.3. Let G be a finite group with subgroups U and C such that G =

UC and C is abelian. Then the maximal chains of subgroups from U to G have

equal lengths and (up to permutation) the same relative indices. Furthermore,

one can pass from one chain to an other one just by changing one group in the

chain in each step.

Proof of R.3. Choose a minimal counter–example subject to U + [G : U ]

being minimal. Let U = A0 < A1 < . . . < Ar = G and U = B0 < B1 < . . . <
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Bs = G be two chains failing the assertion. Then A1 6= B1 and coreG(U) = 1,

where coreG(U) means the maximal normal subgroup of G, which is contained in

U . Set NA = coreG(A1) and NB = coreG(B1). These groups are non–trivial, as

G = A1C, hence 1 6= A1 ∩C ≤
⋂

c∈C Ac
1 =

⋂
g∈G Ag

1 = NA. By maximality of U

in A1, and NA 6≤ U , we get A1 = UNA. Likewise B1 = UNB . Set D = 〈A1, B1〉.
The assumptions of the Theorem are fulfilled if we replace U by A1 or B1. We

consider, in addition to the given chains, a maximal chain from D to G. Thus we

are done once we know that A1 and B1 are maximal in D, [D : A1] = [B1 : U ],

and [D : B1] = [A1 : U ]. Note that D = 〈NAU,B1〉 = NAB1. Suppose there is a

group X properly between A1 and D = NAB1. Then X = NA(X ∩ B1), hence

U < X ∩B1 < B1, a contradiction. By symmetry B1 is maximal in D as well.

Finally we have NA∩B1 ≤ A1∩B1 = U , hence NA∩B1 = NA∩U . This yields

[D : B1] = [NA : NA ∩ B1] = [NA : NA ∩ U ] = [A1 : U ]. Again by symmetry we

get [D : A1] = [B1 : U ]. �
Proof of R.2. As in 2.1, let G be the Galois group of the Galois closure of

C(X)|C(t), where a(b(X)) = c(d(X)) = t.

Let A, B, and U be the fix groups of b(X), d(X), and X, respectively. The

case A = B yields (1) of the Theorem. From now on assume A 6= B. Then

U = A ∩ B is core–free in G, and the chains of subgroups U ⊂ A ⊂ G and

U ⊂ B ⊂ G are maximal. Let Z be a cyclic complement of U in G (c.f. 2.1).

Set NA = coreG(A) ( 6= 1, see the proof of R.3), NB = coreG(B).

Then, by the maximality of the chains above, G = ANB = BNA, A = UNA,

and B = UNB .

Set m = [G : A] = [B : U ], n = [G : B] = [A : U ].

Claim 1. The monodromy groups of b and c are the same, as well as the ones

of a and d.

Proof. Set N = coreB(U). Of course B ∩ NA = U ∩ NA ≤ N . On the

other hand, the set of G-conjugates of A is the same as the set of B-conjugates

of A. Therefore N ≤ NA, hence N ≤ B ∩NA. This shows B ∩NA = N . Now

G/NA = BNA/NA
∼= B/B ∩NA = B/N yields the assertion. �

Now we are going to study three different permutation representations of G.

First let G act on the cosets of U . Then the set of cosets of A provides a system

of imprimitivity, and so does the set of cosets of B. The intersection of a coset

of A and a coset of B is a coset of U : Without loss consider A and Bg. We may

assume g ∈ NA ⊆ A (as G = BNA). Then Ug ≤ A ∩Bg. If Uh ≤ A ∩Bg, then

hg−1 ∈ A ∩B = U , hence Uh = Ug. Therefore Ug = A ∩Bg.

Denote by πA the canonical homomorphism G −→ G/NA ≤ Sym(G/A) of

permutation groups, likewise for B. Note that πA(G) and πB(G) act primitively

by the maximality of A and B in G.

Let ind(g), o(g), and f(g) be the index of g, the number of cycles of g, and

the number of fixed–points of g. Define indA(g), o(g), and fA(g) analogously for

πA(g), likewise for B. From the considerations above we get f(g) = fA(g) · fB(g).
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For a fixed g ∈ G let [ν1, ν2, · · · , νk] be the cycle type of πA(g) (i.e. πA(g) has

cycles of lengths ν1, ν2, . . . ) and [µ1, µ2, · · · , µl] be the cycle type of πB(g). Then

k∑
i=1

νi = m

l∑
j=1

µj = n

k = oA(g) = m− indA(g)

l = oB(g) = n− indB(g)∑
i,j

(νi, µj) = o(g) = mn− ind(g) .

These relations imply

ind(g) ≥ n · indA(g)
ind(g) ≥ m · indB(g) .

Let g1, g2,. . . ,gs be a generating system of G according to 2.2(*).

Claim 2.
∑s

u=1 indA(gu) = m− 1,
∑s

u=1 indB(gu) = n− 1.

Proof.
∑

indA(gu) ≥ m − 1 (for otherwise the elements πA(gu) were a

branch cycle description of a cover X → P1 with X having negative genus).

On the other hand,
∑

indA(gu) ≤ 1
n

∑
ind(gu) = 1

n (mn − 1) = m − 1
n . This

proves the assertion. Here and in the following we use implicitly the symmetry

of certain assertions in A and B. �

Claim 3. If πA(G) is not cyclic, then ind(g) ≥ m · indB(g) + indA(g) for all

g ∈ {g1, g2, . . . , gs}.

Proof. Assume the contrary, which implies o(g) > m ·oB(g)+oA(g)−m for

some g ∈ {g1, g2, . . . , gs}. Assign to this g the ν’s and µ’s as above. Then∑
i,j

(νi, µj) >
∑
i,j

νi +
∑
i

1−
∑
i

νi

Thus there is an index i, without loss i = 1, such that∑
j

(ν1, µj) >
∑
j

ν1 + 1− ν1 .

Let T be the number of j’s such that ν1 does not divide µj . Then

ν1/2 · T ≤
∑
j

(ν1 − (ν1, µj)) < ν1 − 1 ,

hence T ≤ 1. Thus there is at most one j0 such that ν1 does not divide µj0 . But

(ν1, µj0) = 1 yields the contradiction 0 < 0. Therefore the µ’s have a common

divisor δ > 1. From Claim 2 we know that the elements πA(g1), . . . , πA(gs)

provide a branch cycle description of a polynomial. A common divisor δ of the

µ’s means, that this polynomial has the form h(X)δ + e for some polynomial h
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and a constant e. However, this polynomial is decomposable, contrary to πA(G)

being primitive. �

Claim 4. If πA(G) is not cyclic, then ind(g) = m · indB(g) + indA(g) for all

g ∈ {g1, g2, . . . , gs}.

Proof. Suppose wrong. Then Claim 2 and Claim 3 yield the contradiction

mn−1 =

s∑
u=1

ind(gu) > m

s∑
u=1

indB(gu)+

s∑
u=1

indA(gu) = m(n−1)+m−1 = mn−1 .

�

Claim 5. Exactly one of the following holds.

(1) πA(G) or πB(G) is cyclic.

(2) G, πA(G), and πB(G) are dihedral and act naturally (i.e. the cyclic group

of index 2 acts regularly in each case).

Proof. Suppose that (1) doesn’t hold. Choose any g ∈ {g1, g2, . . . , gs}.
Assign to g the cycle lengths νi and µj of πA(g) and πB(g) as in the proof of

Claim 3.

The proof of Claim 3 shows that∑
j

(νi, µj) =
∑
j

νi + 1− νj for each i = 1, . . . , k .

Furthermore, also by this proof, the following holds: For each j there is at most

one i such that µj does not divide νi. In particular, for fixed j, νi ≥ µj besides

at most one index i. Thus

(oA(g)− 1)µj + 1 ≤ m .

Now, for gu in {g1, g2, . . . , gs}, let wu be the maximal associated cycle length

µj . Then

(m− indA(gu)− 1)wu + 1 ≤ m .

Dividing by wu and adding for u = 1, 2, . . . , s yields

s∑
u=1

(1− 1

wu
) ≤ 1 .

Therefore all besides two w’s are 1, and these two exceptions are 2. By the choice

of the w’s, this implies the existence of two indices u1 and u2 such that πB(gu1)

and πB(gu2) are involutions, and the other πB(gu)’s are trivial. The same holds

for the images of gu in πA(G) for the same indices u, as can be seen (for instance)

by Claim 4. Finally, as G −→ πA(G) × πB(G) is an injective homomorphism,

the involutions gu1 and gu2 are the only non–trivial elements in {g1, g2, . . . , gs}.
We get the assertion about the action as follows: gu1gu2 is an mn–cycle, hence

the involutions gu1 and gu2 (neither of which is contained in 〈gu1gu2〉) generate
a dihedral group of order 2mn. �
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The final step is to formulate our results in terms of polynomials: Suppose

that (1) in Claim 5 holds. Then, by Claim 1, we need to study the decomposition

p(Xm) = q(X)m for some polynomials p and q. Set p(X) = Xk · r(X) with r a

polynomial such that r(0) 6= 0. Then Xkm · r(Xm) = q(X)m. Thus Xk divides

q(X), hence q(X) = Xk · s(X) with a polynomial s such that s(0) 6= 0. We get

r(Xm) = s(X)m. Now every zero of r occurs with a multiplicity divisible by m,

hence r(X) = t(X)m with a polynomial t. But then s(X) = ζt(Xm) for some

m-th root ζ of 1. Substituting back we get our result.

Now assume that case (2) of Claim 5 holds. Without loss of generality we

assume a◦b = c◦d = Tmn = Tm◦Tn. Then the fix groups of Tn(X) and of b(X) in

G have the same order, thus they are equal (every group M between U and G is

uniquely determined by its order, as M = UZ∩M = U(M∩Z) and subgroups of

cyclic groups are determined by their order). Thus C(Tn(X)) = C(b(X)), hence

b = L−1
2 ◦Tn for some linear polynomial L2. Then Tn ◦Tm = a◦ b = a◦L−1

2 ◦Tn,

hence a = Tn ◦ L2.

Analogously express c and d in terms of Tm and Tn. The assertion follows. �
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