A NOTE ON THE GROUP OF PROJECTIVITIES OF FINITE PROJECTIVE PLANES

PETER MÜLLER AND GÁBOR P. NAGY

ABSTRACT. In this short note we show that the group of projectivities of a projective plane of order 23 cannot be isomorphic to the Mathieu group M_{24} . By a result of T. Grundhöfer [5], this implies that the group of projectivities of a non-desarguesian projective plane of finite order n is isomorphic either to the alternating group A_{n+1} or to the symmetric group S_{n+1} .

1. Introduction

Any projective plane Π can be coordinatized by a planar ternary ring (R,T), see [6]. There is a natural bijection between the set of points of an arbitrary line ℓ and the set $R \cup \{\infty\}$. Let P denote the group of projectivities of Π ; then P acts 3-transitively on the point set of ℓ . Equivalently, we can consider the group P of projectivities as a permutation group acting on $R \cup \{\infty\}$.

The fundamental theorem of projective planes says that Π is pappian if and only if P is sharply 3-transitive. In [5], T. Grundhöfer has shown that the group of projectivities of a non-desarguesian projective plane Π of finite order n is either the alternating group A_{n+1} , or the symmetric group S_{n+1} , or n=23 and P is the Mathieu group M_{24} . In this paper, we show that the latter case cannot occur. Our proof uses computer calculations.

2. Coordinate loops and their multiplication groups

For a loop $(L, \cdot, 1)$, we denote by L_x , R_x the left and right translation maps by x, respectively. These maps generate the multiplication group $\mathrm{Mlt}(L)$ of L. The stabilizer of the unit element $1 \in L$ is the inner mapping group $\mathrm{Inn}(L)$ of L. The left (or right) translations form a sharply transitive set of permutations. Moreover, for any $x, y \in L$, $L_x R_y L_x^{-1} R_x^{-1} \in \mathrm{Inn}(L)$.

The next result was already noticed by A. Drápal [1] in a slightly weaker form.

Lemma 2.1. The Mathieu group M_{22} of degree 22 does not contain the multiplication group of a loop.

This paper was written during the second author's Marie Curie Fellowship MEIF-CT-2006-041105.

Proof. Let $G = M_{22}$ act on $\{1, 2, ..., 22\}$. Let e be the unit element of G, and $H = G_1$ be the stabilizer in G of 1. Assume that $\mathrm{Mlt}(L) \leq G$. Then G contains two sharply transitive subsets U, V of order 22 such that $e \in U, V$ and $uvu^{-1}v^{-1} \in H$ for all $u \in U, v \in V$. For any $c \in N_{S_{22}}(G)$ there is an element $w \in V$ such that $H^{wc} = H$. Thus the pair $c^{-1}Uc, c^{-1}w^{-1}Vc$ has the same properties as U, V: the commutator element

$$c^{-1}(uw^{-1}vu^{-1}(w^{-1}v)^{-1})c = c^{-1}w^{-1}(wuw^{-1}u^{-1})(uvu^{-1}v^{-1})wc$$

is indeed contained in $H^{wc} = H$. Thus, U can be replaced by some conjugate under $\operatorname{Aut}(M_{22}) = N_{S_{22}}(G)$. Up to conjugacy by $\operatorname{Aut}(M_{22})$ there are only 3 fixed point free elements in G represented by

```
(1\ 2\ 15\ 14\ 17\ 11)(3\ 8\ 19\ 22\ 9\ 13)(4\ 10)(5\ 7\ 18)(6\ 16\ 12)(20\ 21), (1\ 2\ 20\ 3\ 18\ 21\ 9\ 22)(4\ 6\ 19\ 8\ 5\ 11\ 7\ 17)(10\ 15\ 16\ 14)(12\ 13), and (1\ 2\ 9\ 16\ 18\ 22\ 8\ 15\ 10\ 11\ 6)(3\ 7\ 5\ 19\ 17\ 14\ 12\ 21\ 4\ 20\ 13).
```

These three elements generate G, so they describe the action of G we work with. Pick $e \neq a \in U$. By the previous remark we may assume that a is one of the given 3 elements. Note that $1^a = 2$. By transitivity of U there are $b, c \in U$ with $1^b = 3$ and $1^c = 4$.

Let F denote the set of fixed point free elements of G and for $X \subseteq G$ define the set $S_X = \{g \in F \mid xgx^{-1}g^{-1} \in H \ \forall x \in X\}$. Note that if X is a subset of U, then S_X contains V. In particular, S_X is transitive on $\{1,\ldots,22\}$. However, a straightforward computer calculation (see the remark below) shows that for any a as above and $b,c \in F$ with $ab^{-1},bc^{-1},ca^{-1} \in F$, $1^b=3$, $1^c=4$, the set $S_{\{a,b,c\}}$ is intransitive on $\{1,\ldots,22\}$. This proves the lemma.

With given planar ternary ring (R,T), one can introduce binary operations $x+y=T(1,x,y), \ x\cdot y=T(x,y,0)$ in such a way that (R,+,0) and $(R^*=R\setminus\{0\},\cdot,1)$ are loops.

Lemma 2.2. Let P be the group of projectivities of the projective plane Π . Then, the 2-point stabilizer $P_{0,\infty}$ contains the multiplication group $\mathrm{Mlt}(R^*,\cdot)$ of the multiplicative loop (R^*,\cdot) .

Proof. Easy calculation shows that for any $a \in R^*$, the projectivities

$$\begin{array}{rcl} \alpha & = & ([1] \; (0) \; [1,0] \; (\infty) \; [a,0] \; (0) \; [1]), \\ \beta & = & ([1] \; (0,0) \; [a] \; (0) \; [1]) \end{array}$$

map the point (1, y) of [1] to $(1, a \cdot y)$ and $(1, y \cdot a)$, respectively. Moreover, α and β leave the points (1, 0) and (∞) fixed.

Our main result completes the solution of the conjecture in [2, p. 160].

Theorem 2.3. The group of projectivities of a non-desarguesian projective plane of finite order n contains the alternating group A_{n+1} .

Proof. By [5], we only have to exclude the case n=23 and $P=M_{24}$. However, if this case would exist, then by Lemma 2.2, M_{22} would contain the multiplication group of a loop, which contradicts Lemma 2.1.

We conclude this note with two remarks. First, we notice that both the alternating and the symmetric group can be the group of projectivities of a non-desarguesian finite projective plane, see [4] and the references therein. The second remark concerns the computer calculation in the proof of Lemma 2.1. Let a be one of the 3 possibilities from above, then the number of possibilities for $b \in F$ with $ab^{-1} \in F$ and $1^b = 3$ is 3214, 3290, or 3318, respectively. The sizes of the sets $S_{\{a,b\}}$ are between 355 and 538. In the majority of the cases $S_{\{a,b\}}$ is intransitive on $\{1,\ldots,22\}$. In the remaining cases one determines the possibilities for c, and shows that $S_{\{a,b,c\}}$ is intransitive again.

The computation takes about 40 minutes on an average home PC. The algorithm was implemented twice independently in the computer algebra systems GAP [3] and Magma [7].

REFERENCES

- [1] A. Drápal. Multiplication groups of loops and projective semilinear transformations in dimension two. J. Algebra 251 (2002), no. 1, 256–278.
- [2] P. Dembowski. Finite geometries. Springer-Verlag, Berlin-New York, 1968.
- [3] GAP GROUP. GAP Groups, Algorithms, and Programming. University of St Andrews and RWTH Aachen, 2002, Version 4r3.
- [4] T. Grundhöfer. Die Projektivitätengruppen der endlichen Translationsebenen. J. Geom. 20 (1983), no. 1, 74–85.
- [5] T. Grundhöfer. The groups of projectivities of finite projective and affine planes. Eleventh British Combinatorial Conference (London, 1987). Ars Combin. 25 (1988), A, 269–275.
- [6] D. R. Hughes and F. C. Piper. Projective planes. Springer-Verlag, New York-Berlin, 1973.
- [7] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997.

E-mail address: peter.mueller@mathematik.uni-wuerzburg.de

E-mail address: nagyg@math.u-szeged.hu

Institut für Mathematik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary