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Different base fields
Every finite group is a Galois group over C(t).
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M3 as Galois group over Fy(t)

Theorem (Abhyankar 1993)

F(X) = X5 + X3 +1 € Fa(8)[X]
G = Gal(f(X)/F2(t)) = M3

Proof.
e f(X) irreducible G transitive.
e XB X +1=(X34+ X2+ )Xo+ .. ) (XB+..)
G has elements of order 15 G = Mb3, Ayz or Sos.

o Serre’s linearization trick: f(X) divides additive polynomial

FX) = X" 1 69X%° 4. 4 X% + £8X% + X, hence

A

GL11(F2) > Gal(f(X)/Fg(t)) — G 19f ’G| Asz f G.
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Serre’s linearization trick

Serre's trick works . . .

... because Fo—permutation module of M3 has 11-dimensional submodule
(even words of Golay code).
Similar trick works over F3 for M1 < Sqs.

Conway, McKay, Trojan (2009)

XB+ X3+t Fat)
X24+X+l’ F2(t) M4
X224+ X+t TFs(t)
XM 4 tx2 -1 TFa(t)

Bad characteristic
How to treat Mb3 in characteristic # 27
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Properties of M3
@ My3 < Sp3 is 4-transitive on {1,2,...,23}.
@ |Mpy3| =23-22-21-20-48 = 10200960.
o [Axz : Ma3] = 1267136462592000.
@ Mbs is simple.
@ M3 is self-normalizing in Sy3.

M,3 as monodromy group of a polynomial
o h(X) e C[X], such that Gal(h(X) — t/C(t)) = Mas,
o (equivalent to) Mon(P}(C) — PL(C), z — h(z)) = Mos.
e Existence: Well known and easy (up to Riemann’s existence theorem),

o with unique branching type: 1728 132244 23!
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Mathieu group Mb3 as monodromy group of a polynomial

Theorem (Matiyasevich 1998 (unpublished), Elkies 2013)

K = Q(v/23 — 2,/-23)
h(X) = X + complicated lower order terms € K[X]:
Gal(A(X) — t/K(£)) = Mys.

Analytic verification of Galois group

P(C) - PX(C)

Numerically co te monodro oup of cove A~
umeri y mpu mon I my gr Up ver AN h(z)

Algebraic verification of Galois group, first step
o Pick prime p > 23, such that h(X) = (h(X) mod p) € F,[X].
o Suffices to show: Gal(h(X) — t/Fp(t)) = Mas. (S. Beckmann)
o Easy: My3 < Gal(h(X) — t/Fp(t)). (Dedekind)
o Need to decide: Gal(h(X) — t/Fp(t)) = Moz or Azs?
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Verification of Galois group

Naive idea, for small p > 23:

@ M3 has two orbits on 5—sets, of lengths 5313 and 28336.

o “Compute” polynomial of degree () = 33649, whose roots are the

5-sums of roots of h(X) — t, and “check” if it has a degree 5313 factor
over Fp(t) ...

Using Weil-bound for points on curves (Elkies)

1 ! [{to € Fp | h(X) — to splits into linear factors}|
— = lIm
G| poeo p

Elkies chose p = 108 + 7: The factorization of 10® polynomials mod p was
a somewhat extravagant computation (two days of CPU time in gp).
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Steiner system S = S(4,7,23)
@ P = 23 points, B = 253 blocks = certain 7-sets from P

o |B|(}) = (243) (any 4-set of points contained in exactly one block)
@ Mys = Aut(S) transitive on 8 and B

o h(X) —t =L ep(X —x). Fix xo € P, so t = h(xo).

Associated polynomials

x € P integral over Fp[t] and F,[xp], hence

H(h(x0), Y) = H(t,Y) = J[ (Y =D _x) €F,[t][Y] (degree 253)

BeB xEB
Hixo, Y)= [ (Y=Y x) €Fplx][Y] (degree 77)
xXo€EBEDB xeB

Ho(xo, Y) = [ (Y =D x) € Fplxl[Y] (degree 176)

xo¢ BEDB xeB
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Lemma (essentially)
If h(X) € Fp[X] has degree 23, then

Gal(h(X) — t/Fp(t)) = Mz <= H(h(X),Y) = Hi(X, Y)H:(X,Y)
for some H(t,Y') € F,[t][Y] irreducible of degree 253, and
Hi(X,Y), Ho(X,Y) € Fp[X][Y] of degrees 77 and 176.

How to compute ...
Hit,Y) =TT (Y => %
BeB xeB

from h(X)? Certainly not as a degree 253 factor of the degree
(273) = 245157 polynomial

H (Y—Zx).

ce(t) <€
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Laurent series

Computation of ...
H(t, Y) = TT(Y =D x) € Fpltl[Y] = Fp[r][Y]
BeB xeEB
by explicit determination of ¥ and B:
e h(X)—t=h(X)— 72 =0 has a root

Lir)=7+a+ a7 ' +ar 2 +--- € Fp((1/7)).

P ={L(wr) | w e W} where W < % with [W| = 23.
W acts regularly on 33.

There are only two continuations of W to an action of My3, so there
are only two candidates for 8. One of them works!

Suffices to work with truncated Laurent series.

No need to factor H(h(X), Y) to obtain Hi(X, Y) and Ha(X, Y).
Work in F,((1/x0))!

_—




Laurent series

More general case

Want to upper bound G = Gal(P(X) — tQ(X)/k(t)) < S,. Method works
best,

o if there is a set B with 2 < |B| < n—2, and [G : Gg]| small,

@ there is an inertia generator with few cycles (hence few potential
candidates for B), and

@ k is a finite field (otherwise the coefficients of Laurent series explode).

For instance, it works well for Granboulan's Mp4-polynomial.
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Using Hi(xo, Y)

Gal(h(X) — t/Fp(t)) = Mas = [ (Y =D x) € FplxllY],

xoEBEDB xEB

hence

Sk = Z (Z x)k € Fplx] for all k > 0.

x0EBEB x€B
On the other hand, with xo = 1/z, w a 23-rd root of unity, and m > 0, the
roots x; of h(X) —t = h(X) — h(1/z) are

i

55 = Y4 higher order terms = A;(z) + O(z™) € Fy((2)), hence
z

Foll/2] 5 Se= Y (D Ai(2)k+0(z"5).

x0EBEDB x;eB




Reverting the technique to find polynomials

Strategy:
o Set h(X) = a1 X 4+ aX? + - + an X?! + X3 € F,[a][X].
e For m > 0 compute x; = A;(z) + O(z™) € Fp[a]((2)).
@ For k=1,2,...,m—1 collect the coefficients of z/ with j > 1 in

> xocBen(Doxes A;i(2))¥. They all have to vanish!
@ Solve this system of polynomial equations for the unknowns a.

Results:

@ For p = 47 get Elkies’ polynomial within a few seconds (compared to
46 CPU hours by refined standard approach).

@ One can also compute the Laurent series and Grobner bases over Q
instead of F,. Then a naive Sage implementation takes a few minutes
to get the degree 4 number field over which the polynomial is defined.




