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Abstract

Let f(X,t) € Q[X,t] be an irreducible polynomial. Hilbert’s irre-
ducibility theorem asserts that there are infinitely many ¢y € Z such
that f(X, o) is still irreducible. We say that f(X,t) is general if the
Galois group of f(X,t) over Q(t) is the symmetric group in its natural
action. We show that if the degree of f with respect to X is a prime
# 5 or if f is general of degree # 5, then f(X,tg) is irreducible for
all but finitely many to € Z unless the curve given by f(X,t) =0 has
infinitely many points (zg,tp) with xg € Q, tg € Z. The proof makes
use of Siegel’s theorem about integral points on algebraic curves, and
classical results about finite groups, going back to Burnside, Schur,
Wielandt, and others.

1 Introduction

If f(X,t) € Q[X,¢] is an irreducible polynomial, then there are various asser-
tions about densities of the set R of integers to such that f(X,y) becomes
reducible. For instance it is well known that |R N [-n,n]| = O(n'/?), and
this is best possible in view of f(X,t) = X?—t. A recent trend is the explicit
construction of universal Hilbert sets H, so that for any f as above, f(X, )
is reducible only for finitely many ¢, € H, see [Zan96], [DZ98], [Bil96].

Here we go a different direction. We show finiteness of R under rather
general conditions.
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Recall that an irreducible polynomial f(X,t) € Q[X,t] is called general
if the Galois group of f(X,t) over Q(¢) is the symmetric group in its natural
action on the roots of f(X,t).

Theorem 1.1. Let f(X,t) € Q[X,t] be an irreducible polynomial. Suppose
that degy f is a prime number, or f is general. Suppose there are infinitely
many ty € Z, such that f(X, ty) € Q[X] is reducible without linear factor.
Then degy f =5, f is general, and there are actually such examples of degree

5.
As a consequence we will obtain

Theorem 1.2. Let f(X,t) € Q[X,t] be an irreducible polynomial which is
general or has prime degree in X, such that the curve given by f(X,t) =0
has positive genus. Then f(X,tg) € Q[X] is reducible for only finitely many
to € 7.

The proof proceeds roughly as follows. We use a representation of R
as a union of the value sets of finitely many rational functions g(Z). This
representation comes from the classical reduction argument in the proof of
Hilbert’s irreducibility theorem combined with Siegel’s classification of curves
with infinitely many rational points with bounded denominator. This ap-
proach has also been used for the construction of explicit universal Hilbert
sets as mentioned above, and is due to M. Fried [Fri74], who investigated the
special case f(X,t) = h(X)—t for a functionally indecomposable polynomial
h. The group which encodes the properties for proving the above theorems
is the Galois group of f(X,t)(g(X) —t) over the rational function field Q(#),
regarded as a permutation group on the roots of f(X,t) on the one hand, and
on the roots of g(X) —t on the other hand. The interplay between these two
permutation representations is the main theme of the paper. Information
about the first representation comes from the hypotheses of the theorems,
whereas information about the second representation comes from using spe-
cific properties of g, and some arithmetic considerations coming from Puiseux
expansions of the roots of g(Z) — ¢ at infinity.

Despite the group theoretic nature of our treatment we do not need
the classification of the finite simple groups. We do however, especially in
the prime degree case, use classical non—trivial results of Schur, Burnside,
Wielandt and Neumann, which miraculously fit our needs.



In Section 9 we discuss various extensions and their limitations of the
above theorems. For this work, which is in progress right now, we do however
employ the classification theorem.

It is interesting that the prime degree 5 plays an exceptional role in The-
orem 1.1. A recent preprint of Debes and Fried [DF99] analyzes this in the
special case f(X,t) = h(X) —t for a polynomial h.

Acknowledgment. I thank Moshe Jarden for carefully reading previous
versions and his valuable comments.

2 A description of Hilbert sets

Let f(X,t) € Q[X,¢] be an irreducible polynomial. Let R C Z be the set
of those integers ty € Z, such that f(X,t) is reducible over Q. So Z \ R is
the (integral) Hilbert set of f. Using a well known reduction argument in
the proof of Hilbert’s irreducibility theorem (see e.g. [Lan83, Chapter 9]) and
Siegel’s classification of algebraic curves with infinitely many rational points
with bounded denominator [Sie29], [Lan83, Chapter 8], one obtains (confer
also [Fri74, Theorem 1], [Zan96, page 705]) the following

Proposition 2.1. There ezist finitely many non—constant functions g;(Z) €
Q(Z) and a finite set W such that

R=wulJ4(@nz)
and f(X, gi(Z)) is reducible over Q(Z).

The degree degg of a rational function ¢(Z) € Q(Z) is the maximum
of the degrees of the numerator and denominator in reduced representation.
Note that degg equals the degree of the field extension Q(Z)|Q(g(Z)). In
particular, the degree is an invariant under composing rational functions with
linear fractional functions. Also, if g(Z) = a(b(Z)), with a(Z),b(Z) € Q(Z),
then deg g = dega - degb.

We use the usual conventions when regarding g as a map of the projective
line C U {o0} to itself.

The following is a tightening of the representation of R from above.

Proposition 2.2. Choose the functions g; in Proposition 2.1 with Y deg g;
minimal. Then |g;(Q) NZ| = oo, and the following holds: If g;(Z) = a(b(Z))
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with a,b € Q(Z) and degb > 1, then f(X,a(b(Z))) is irreducible over
Q(b(Z))-

Proof. Of course |g;(Q)NZ| = oo, for otherwise we could enlarge W. Suppose
that f(X,a(b(Z))) is reducible over Q(b(Z)). Upon replacing b(Z) by the
variable Y, this means that f(X,a(Y")) is reducible over Q(Y'). In particular,
f(X,u) is reducible for each u € a(Q) NZ, so a(Q) NZ C R. Clearly
G(Q)NZ Ca(QU{cc})NZ = (a(Q)U{a(c0)}) NZ. So we could replace g;
by a and enlarge W by a(oo) (if this element is an integer), contrary to our
minimality assumption. [

3 Rational functions g with |g(Q)NZ| = o

Throughout this section let ¢ € Q(Z) be a rational function. Assuming
infinitely many integral values on Q is quite a restrictive condition on g, by
the following result of Siegel, see [Lan83, Chapter 8, §5], [Sie29].

Proposition 3.1. Let g € Q(Z) with |g(Q) NZ| = oco. Then one of the
following holds.

(a) g is a polynomial.
(b) g~ '(o0) consists of two real, algebraically conjugate elements.

Let ¢ be a transcendental over Q. Write g(Z) = r(Z)/s(Z) with relatively
prime polynomials r, s € Q[Z]. The monodromy group G of g is the Galois
group of r(Z)—ts(Z) over Q(t). If n is the degree of g, then we consider G as a
permutation group on the n roots of r(Z) —ts(Z). Note that the monodromy
group of g does not change if we compose g with linear fractional functions
over Q.

The next result is about decompositions of functions as in Proposition
3.1.

Lemma 3.2. Let g(Z) = a(b(Z)) with a,b € Q(Z). Suppose that |g~*(c0)| =
2. Then one of the following holds.

(a) There is v € QU {oo} with b=*(y) = g~ *(00).

(b) The monodromy group of b(Z) is solvable.



Proof. We have
97" (00) = b7 (a™(00)),

so la™'(00)] = 1 or 2. First suppose that a*(co) = {y}. Clearly v €
QU {0}, as every algebraic conjugate of v is also mapped to co under a. So
(a) holds.

Now suppose that a='(c0) = {71,72} for 3 € QU {0} and v, # 7.
Then b~ (1) = {61} and b~ (y2) = {d} for certain & € QU {co}. Set
b(Z) = Ab(u(Z))) with suitable linear fractional functions \, u € Q(Z),
such that b~!(c0) = {oo} and b~1(0) = {0}. Then b(Z) = kZ", for some
k € Q. So the Galois group C of b(Z) — t over Q(t), which is the same one
as that of b(Z) — t, is cyclic of degree . Hence Aut(C) is abelian. But the
monodromy group G of b(Z), which is the Galois group of b(Z) —t over Q(t),
normalizes C'. (The quotient G/C' is the Galois group over Q of the algebraic
closure of Q in a splitting field of b(Z) — ¢ over Q(¢).) As C' is abelian and
transitive, C' equals its centralizer in G (e. g. [Hup67, 11.3.1]), hence G/C
embeds into the abelian group Aut(C), so G is solvable. O

We need more precise information about monodromy groups of functions
as in Proposition 3.1. The following proposition is a well-known application
of the branch cycle argument, see e. g. [Shi74, Section 3|, [Fri94, §3], [V6196,
2.8]), or [Fri95, page 330]. Note that C is the inertia group of some place
of a splitting field of g(Z) — t over the place t — oo, and the generators of
C are conjugate already inside the decomposition group associated to this
place. A proof of this proposition can also easily be obtained using Puiseux
series expansions of the roots of g(Z) —t in 1/t'/", where n = degg, as in
the proof of Lemma 3.4.

Proposition 3.3. Let g(Z) € Q[Z] be a non—constant polynomial. Then the
monodromy group G of g contains a cyclic transitive group C', such that the
generators of C' are conjugate in G.

Lemma 3.4. Let m € N, v € QU {0}, and b(Z) € Q(Z), such that
b=l () consists of two algebraically conjugate elements, each assumed with

multiplicity m. (So b has degree 2m.) Let B be the monodromy group of b.
Then the following holds

(a) B contains an element o, which is the product of two m—cycles.

(b) B contains an element which switches the two orbits of <o>.



(¢c) If m = p is an odd prime, then B contains an element which has two
fized points and four cycles of length (p — 1)/2.

Proof. There is no loss in assuming v = oo, and that the sum (which is in
QU {oo}) of the two elements in b~ (co) vanishes. Then b(Z) = h(Z)/(Z* —
d)™ with a non-square d € Q, where h(Z) € Q[Z] is a polynomial of degree
at most 2m which is relatively prime to Z2 — d.

Let y be a transcendental over Q, and  be a splitting field of b(Z) — y
over Q(y). We use Puiseux series in order to embed (2 into a power series
field and explicitly write down the elements of B whose existence we claim.

We seek to solve
W(Z) - y(Z* - d)" =0, 1)

Set y =1/¢™ and Z = Vd + §Z. Then this equation becomes
WVd+§Z) — Z™(2Vd + §2)™ = 0.

Hensel’s Lemma gives a solution for Z in the power series ring Q[[7]]. Sub-
stituting back, and doing the same for —v/d instead of v/d, shows that

eVd + ayJ+ age )’ + - € Q[7]]

are solutions of (1), where e € {—1,1} and a;. € Q. Let ¢ be a primitive
m—th root of unity. Note that (1) remains unchanged when we replace § by
¢'y. Hence all the solutions of b(Z) — y = 0 have the form

Zie = 5\/8 + al,egig + a2,€C2ig2 +--- € @[[g]]:

where i € {0,1,...,m — 1}. This embeds € into Q((7)), which is an infinite
Galois extension of Q((1/y)). The restriction of I' := Gal(Q((7))|Q((1/y)))
to 2 induces a subgroup of B.

To (a). Let o € T be trivial on Q, and map § to (fj. Note that a;. # 0
(substitute the Puiseux series into §™h(Z) = (Z? — d)™ and check the lower
degree in ¢ of both sides), so we can see the effect of o on the roots z;. by
looking at the term a; .C*y. The restriction of o to € induces the requested
action on the z; ..

To (b). Choose 8 € I, such that () = ¢, and (vd)? = —v/d. Then f
interchanges the set of the z; _; with the set of the z; ;.

To (c). Let H be the subgroup of index 2 of Gal(Q(¢)|Q). If vd € Q(¢),
then H fixes v/d. If however vd ¢ Q(¢), then we can extend H to Q, such
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that v/d is fixed. At any rate, we can extend H to Q fixing vV/d. Let «
be a generator of the cyclic group H of order (p — 1)/2. Extend « to an
element in I" by requiring that « fixes . Let (¢ = (" for an integer w. We
must have af, = a; .(* for some integer e.. Taking indices modulo p, we set
Vie '= Zite./(1—w),e- From

(an,GPHee/ 07y — gy Gitee/ )

we obtain
o
,Ui,g - U’L”LU,E’

hence the element « of order (p — 1)/2 permutes the p—th roots of unity in
the same way as the roots v; . for fixed €. Therefore o has two fixed points,
and the remaining elements are permuted in cycles of length (p — 1)/2. The
claim follows. O

4 Galoistheoretic consequences from Propo-
sition 2.2

Let f(X,t) € Q[X, ] be irreducible, and g(Z) be one of the rational functions
g; of Proposition 2.2. Write g = /s with relatively prime polynomials r, s €
Q[Z]. Let t be a transcendental over Q. Let x be a root of f(X,t), and
z be a root of r(Z) — ts(Z), where x and z are chosen in some algebraic
closure of Q(¢). Denote by L the Galois closure of Q(z, 2)|Q(¢), and let A :=
Gal(L|Q(t)) be the Galois group of this extension. Set U := Gal(L|Q(t, z))
and V := Gal(L|Q(z)). As f(X,t) and r(Z) — ts(Z) are irreducible over
Q(t), the permutation action of A on the roots of f(X,t) (or the roots of
r(Z) —ts(Z)) is equivalent to the action on the coset spaces A/U (or A/V).

We fix some more notation. Let B be any subgroup of A which properly
contains V' (possibly B = A). From Liiroth’s theorem we obtain a decom-
position ¢(Z) = a(b(Z)), where B = Gal(L|Q(b(z))). Set W := BNU =
Gal(L|Q(b(2), x))-

The following diagram illustrates the fields and their associated fix groups.



If H, I are subgroups of A, thenset HI := {hi| h € H,i € I}. (In general,
HI is not a group, but it is if H or [ is normal in A.)

Lemma 4.1. With the notation from above, assume that U is a mazimal
subgroup of A. Then the following holds.

(a) V' is intransitive on the coset spaces A/U and B/W, whereas B is
transitive on A/U.

(b) A acts faithfully on the coset spaces AJU and AJV .

(c) If W is a mazximal subgroup of B, then B acts faithfully on the coset
spaces B/W and B/V.

Proof. To (a). f(X,t) is reducible over Q(z) by Proposition 2.1. This means
that V', the stabilizer of z in A, acts intransitively on the conjugates of x.
This action is equivalent to the action on the coset space A/U. Similarly, by
Proposition 2.2, f(X,b(z)) is irreducible over Q(b(2)), so B acts transitively
on the conjugates of x. Now suppose that V' is transitive on B/W. This
implies WV = B. Transitivity of B on A/U means UB = A. These two
equations together give UV = UWV = UB = A, so V is transitive on A/U,
a contradiction.

To (b). Let Ny and Ny be the kernels of the actions of A on A/U and
A/V, respectively. So Ny is the maximal normal subgroup of A which is
contained in U, and likewise for V. From (a) we get

(UNy)(VNy) = UVNy = NyUV = UV G A.

Note that Ny N Ny = 1, as L is the compositum of the fixed fields of Ny
and Ny. Now Ny < U, as U is maximal in A by assumption. So Ny < Ny,
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hence Ny = 1. Also, Ny <V, for otherwise B := NyV >V, hence UB = A
by (a). But then UV = UNyV = UB = A, contrary to (a). So Ny =1, and
the claim follows.

To (c). Suppose that b € B lies in the kernel of the action of B on B/W.
Then b is contained in the B-conjugates of W, so b is contained in the B
conjugates of U > W as well. By (a), UB = A, so the set of the B—conjugates
of U is the same as the set of the A—conjugates of U. But the A—conjugates
of U intersect trivially by (b), so b = 1. Now let N be the kernel of the action
of B on B/V. By (a), we know (NW)V G B, so NW = W by maximality
of Win B, hence N < W and therefore N = 1 by the first part. O

5 Some group theoretic results

The following proposition is due to Burnside [HB82, XII1.10.8] for n a prime.
The more difficult case where n is not a prime is due to Schur [Wie64, 25.3],
see also [DM96, 3.5]. Note that primitivity and the existence of the transitive
cyclic subgroup is automatically guaranteed in the prime degree case.

Proposition 5.1. Let G be a primitive permutation group of degree n which
contains a cyclic transitive subgroup C. Then either G is doubly transitive,
or n is prime and G is solvable.

P. M. Neumann [Neu72, page 203| (see also [HB82, XII.10.10]) has given
an elegant proof using simple facts about symmetric block designs for the
following theorem of Wielandt.

Proposition 5.2. Let G be a permutation group of prime degree p. Suppose
that the normalizer of a Sylow p—subgroup has even order. Then G contains
only one conjugacy class of subgroups of index p.

The primitive groups of degree 2p (p a prime) are known by the classifi-
cation of the finite simple groups. The following result of Wielandt [Wie64,
31.1, 31.2] is a tight statement about such groups which can be obtained
without the classification (the main tools being character theory and Propo-
sition 5.1).

Proposition 5.3. Let p be a prime, and G be a primitive permutation group
of degree 2p. Then either G is doubly transitive, or the following holds: A
pointstabilizer of G has three orbits of lengths 1, u(2u+1) and (u+1)(2u+1)
for some u € N.



We also need the following easy

Lemma 5.4. Let G be a finite group with subgroups Hy, and Hy, such that
HH, ; G, and the actions of G on the coset spaces G/Hy, and G/Hy are
doubly transitive. Then |Hy| = |H,|.

Proof. If G acts on a set €2, let x(g) be the number of fixed points of g € G.
It is well known (see [Gor68, 2.7.4(i)]) that > ., x(g9) = r|G|, where r is
the number of orbits of G. Apply this to the action on €2 x € to see that
G is doubly transitive on € (which is equivalent to G having exactly two
orbits on © x €, namely the set of all («, 5) with a # 3, and the set of all
(a,)) if and only if 37 x(9)* = 2|G|. Now let 1, x2 and x correspond
to the actions of G on G/H;, G/Hy and G/H, x G/H,, respectively. For
y € G\ HiH, the pairs (Hy, Hs) and (Hyy, H) lie in distinct G-orbits. Thus
G has at least two orbits on G/H; X G/H,. Taking these things together
gives > o xi(9)* = 2|G] for i = 1,2, and 3 o x1(9)x2(g9) > 2|G|. As
equality holds in the Cauchy—Schwarz inequality

4G < O xa(9)x2(9)” <D xa(9)* Y xalg)” = 4IGP,

geG geG geG

there is a constant s such that x1(g) = sx2(g) for all g € G. But

> xailg) =D xalg) =1GI,

geG geG

so s = 1. In particular [G : Hq] = x1(1) = x2(1) = [G : H]. Conclude that
|Hy| = [Hs. 0

Lemma 5.5. Let G be a transitive, solvable permutation group of prime
degree p. Then G is permutation equivalent to a subgroup of the affine group
AGL(p), which is defined by the permutations x — ax + b of the elements
of the finite field F),, with a,b € F,,, a # 0.

Furthermore, if U < G is intransitive, then U fizes a point.

Proof. For the first part (an easy theorem of Galois), see [Hup67, 11.3.6].
As to the second part, let u; = (z — a;x + b;), i = 1,2, be two nontrivial
elements of U. Then a; # 1 by intransitivity of U. (Otherwise u; would
generate a p—cycle.) Write the action of AGL;(p) on F,, from the right. Then
the commutator u; 'u; tugug is © — x + (az — 1)by — (a3 — 1)by. We get
(ag — 1)by — (a3 — 1)by = 0 by intransitivity of U. So w; and wus have the
common unique fixed point b;/(1 — a;). The claim follows. O
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Lemma 5.6. Let B be the alternating group on 5 letters M = {1,2,3,4,5},
V' be a subgroup of index 10, and o € B be an element of order 5. Then o
has two 5—cycles on B/V, and B does not contain an element which switches
the two orbits of <o> on B/V.

Proof. V has order 6, so by divisibility reasons V' has two orbits on M, one
of length 2, the other one of length 3. If V| say, leaves {1, 2} invariant, then,
since the stabilizer in B of {1,2} has a faithful representation on {3,4,5},
it must coincide with V. Thus the action of B on B/V is equivalent to the
action of B on the set M, of subsets of M of size 2. (Note that B is transitive
on Ms.) Let 7 € B be an element which switches the two orbits of <o> on
M. So 7 has even order, hence |7| = 2 (because even order elements in B are
necessarily involutions) and 7 is a double transposition on M. In particular,
7 has two fixed points on M,, so 7 cannot switch the two orbits of <o> on
M, a contradiction. O

Lemma 5.7. Let 2 < k < n—2 be integers, and denote by My, the collection
of all subsets of M = {1,2,...,n} of size k. Let o be an element of the
symmetric group on M. Then o has at least two cycles on My, and if it has
exactly two cycles, then either n =4, |o| =3 or4, orn =275, |o| =5.

Proof. First consider the case that ¢ is an n—cycle on M. Then <o> cannot
be transitive on My, for then n = |o| = | M| = (Z) > (g), son < 3, but
n > 4 by assumption. Now suppose that o has exactly two orbits on M.
Then one of the orbits has length at least (})/2, son > (})/2 > n(n—1)/4,
thus n < 5. These cases really occur.

Next suppose that ¢ is an (n — 1)—cycle on M. As above, we now get
n = 4. This case occurs too.

Now suppose that o is neither an n—cycle nor an (n — 1)—cycle on M.
Then o leaves on M a set S with 2 < |S| < n/2 invariant. Without loss
k < n/2 (as the action on My, is the same as the action on M, ). For
1 =0, 1,2 choose sets S; of size k, such that 7 points of S; are in S, and the
remaining k& — ¢ points are in the complement of S. Then these three sets of
course are not conjugate under <o>. ]

Lemma 5.8. Let the symmetric group Sy act on the set of subsets of size 2 of
{1,2,3,4}. Let o be an element of order 3. Then no element of Sy switches
the two orbits of <o>.

11



Proof. Without loss assume ¢ is the permutation (1 2 3) on {1,2,3,4}. Then
o permutes cyclically the sets {1,4}, {2,4}, and {3,4}. Suppose that an
element in S, switches these three sets with {1,2}, {2,3}, and {1,3}. Thus
each of the latter three sets contains a number which is mapped to 4. This
of course is nonsense. O]

6 The prime degree case

We continue to use the setup from Section 4, but additionally assume through-
out this section that degy f = p, with p a prime number. Also, we assume
that B is chosen such that V' is a maximal subgroup of B. Recall that the
possibility B = A is not excluded. From Lemma 4.1(a) we obtain

[B:W]=[A:U]=degy f =p.

In particular, W is a maximal subgroup of B, so 4.1(c) implies that B acts
faithfully and of course transitively on the coset spaces B/V and B/W. The
aim of this section is

Lemma 6.1. With the assumptions from above, V and W are conjugate
in B, or p =5 and the action of A on AJU is the natural action of the
symmetric group on 5 letters.

For the sake of easier reading, we assume that V" and W are not conjugate
in B, and derive in a series of claims p = 5 and the identification of A.

Claim 6.2. B is doubly transitive on B/W and not solvable.

Proof. Suppose that B is solvable. Then the action of B on B/W is given as
a transitive subgroup of the affine group AGL;(p), see Lemma 5.5. But V' is
intransitive in this action by Lemma 4.1(a). Hence, by Lemma 5.5, V' fixes a
point in this representation. So V' is contained in a B—conjugate of . But
V' is maximal in B by assumption, so V' and W are conjugate in B, contrary
to the general hypothesis. This contradiction shows that B is not solvable.
The first part of the claim then follows from the second one and Proposition
5.1. (Note that p = [B : W] implies that B is primitive on B/W and that
the existence of a transitive cyclic subgroup follows from Sylow’s theorem,
just take the group generated by an element of order p.) O

Claim 6.3. There is v € QU {oo} with b= (v)| = 2.
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Proof. We have |g(Q)NZ| = oo, hence either g is a polynomial, or [g~*(c0)| =
2, by Proposition 3.1.

Assume first that g is a polynomial. Hence g7'(c0) = {o0}. So a™!(c0)
consists of only one element. Use a linear fractional transformation to move
this element to co. Thus we can assume without loss that b~1(o0) = {oo},
so b is also a polynomial with coefficients in Q. By faithful action, the
monodromy group of b is B in the action on B/V. Use Propositions 3.3 and
5.1 and the non-solvability of B (Claim 6.2) to conclude that B is doubly
transitive on B/V. Since B is doubly transitive on B/W (Claim 6.2), Lemma
5.4 implies that [B : V] = [B : W] = p. Let C be the cyclic transitive (on
B/V') subgroup of B from Proposition 3.3. This proposition says that the
generators of C' are conjugate in B. In particular, a generator ¢ of C' is
conjugate to its inverse, say ¢® = ¢! for some b € B. So the order of b
modulo the centralizer of C' in B is 2, in particular b has even order. But C
is a Sylow p-subgroup of B (as p | |C|, but p* f|B]||p!), with a normalizer
of even order. Apply Proposition 5.2 to get the contradiction that W and V'
are conjugate in B.

Thus we have |g7*(o0)| = 2. As remarked above, B is the monodromy
group of b. But B is not solvable by Claim 6.2, so Proposition 3.2(a) holds.
Conclude that [b~(c0)| = 2. O

We have seen that the rational function b fulfills the hypotheses of Lemma
3.4. Accordingly, let 2m = [B : V| = degb be the degree of b. Recall that
B can be identified with the monodromy group of b (by faithful action of B
on B/V, see Lemma 4.1(c)). Let o € B be the element from Lemma 3.4(a),
which acts as a product of two m—cycles on B/V.

Claim 6.4. m = p and B contains a subgroup H which has two fixed points
and four orbits of lengths (p—1)/2 on B/V . (Note that p > 2 by Claim 6.2.)

Proof. Recall that B acts faithfully on the coset spaces B/V and B/W by
Lemma 4.1(c), and that [B : W] = p. So p divides |B|. On the other hand, p
does not divide |V|, for otherwise V' would contain an element of order p. But
such an element acts as a p—cycle on B/W | in particular V' were transitive
on B/W, contrary to Lemma 4.1(a). Hence p divides [B : V] = 2m, so p|m
as p is odd. Thus a suitable power ¢¢ has order p. So ¢¢ is a p—cycle on
B/W, but then ¢ has to be a p—cycle on B/W too. Since the action of ¢ on
B/W is faithful, |o| = p. Since o acts on B/V as a product of two m—cycles
and since this action is faithful too, |o| = m. Conclude that m = p.
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The existence of H follows from Lemma 3.4(c). O

We are now ready to prove Lemma 6.1. By the previous claim, the action
of B on B/V has degree 2p. This action is primitive, as V' is a maximal
subgroup of B (see the beginning of this section). So we can apply Propo-
sition 5.3. As VW < B and the action of B on B/W is doubly transitive
(by Claim 6.2), Proposition 5.4 implies that the action of B on B/V is not
doubly transitive (for then p = [B : W] = [B : V] = 2p), so the alterna-
tive holds, that is a point stabilizer of B has orbit lengths 1, u(2u + 1), and
(u+1)(2u + 1) for u € N. Each of these orbits is a disjoint union of orbits
of the group H from the previous claim, whose lengths are 1 (2 times) and
(p—1)/2 (4 times). Thus there are integers 0 < o < 1 and 0 < 5 < 4 such
that

a+ﬁp%1:u(2u+1)
1—a+(4—5)]%1:(u+1)(2u+1).

Eliminate (p — 1)/2 to obtain 4o — 8 = (2u + 1)(4u — 2pu — ), so 2u + 1
divides 4a — 3. Since |4a — | < 4, we get u = 1 and «a + 25 = 3. Conclude
that a = f = 1 and therefore p = 5.

The only non-solvable transitive groups of degree 5 are the alternating
and symmetric group. The former case cannot hold, because the alternating
group As, in its representation on 10 points, does not contain an element

which switches the two 5—cycles of o (see Lemma 5.6), contrary to Lemma
3.4(Db).

7 The general case

Now suppose that degy f = n, and that the Galois group of f(X,t) over Q(t)
is the symmetric group .S,, in the natural action. Again we use the setup from
Section 4. By Lemma 4.1(b), A acts faithfully as the symmetric group on
A/U. The following lemma describes the faithful action of A on A/V.

Lemma 7.1. There is an integer 1 < k < n — 1, such that the action of A
on A/V is equivalent to the natural action of the symmetric group S, on M,
where My, denotes the set of subsets of M ={1,2,...,n} of size k.
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Proof. Identify A with S,, and A/U with M. Then V is a subgroup of
Sy, which by Lemma 4.1(a) is intransitive on M. Without loss, suppose
that {1,2,3,...,k} is an orbit of V on M. Let B > V be the full setwise
stabilizer of this orbit in S,. As the group B is still intransitive on M, it
cannot properly contain V' by Lemma 4.1(a). Therefore V = B, and as A
is transitive on My, the action of A on A/V is equivalent to the action on
M. ]

Lemma 7.2. Ifn # 5, then the groups U and V' are conjugate in A.

Proof. Suppose that U and V are not conjugate in A. Then 2 < k < n — 2
with & from the previous lemma. The rational function g fulfills [g(Q)NZ| =
oo, hence either g is a polynomial, or |g~!(c0)| = 2, by Proposition 3.1. So
Proposition 3.3 or Lemma 3.4(a) gives an element o € A, such that o has at
most two cycles on A/V. Use Lemma 5.7 to conclude n = 4 or 5.

So we have to look at n = 4. Note that £k = 2. As the symmetric group
on 4 letters does not contain an element of order 6 = [A : V], we get from
Proposition 3.3 that ¢ is not a polynomial. Now Proposition 3.1 together
with Lemma 3.4(a) allows us to assume that the o from above has two cycles
on A/V of equal length, hence |o| = 3. Now use Lemma 5.8 to see that the
two orbits of o on A/V cannot be switched by an element in A, contrary to
Lemma 3.4(b). O

8 Proof of Theorems 1.1 and 1.2

Assume in addition to the assumptions of Theorem 1.1 that degy f # 5, or
degy f =5 but f is not general. Let g be one of the functions g; that occur
in Proposition 2.2.

Lemma 6.1 and Lemma 7.2 prove in the setup of Section 4 that V is
conjugate in A to a subgroup of U. Hence, V', which is the stabilizer in A
of z, fixes one of the conjugates of z. This implies that f(X,g(Z)) has a
factor of degree 1 in X over Q(Z). Since this holds for each ¢, the tightened
presentation of R implies that for almost all ¢y € Q, f(X,t) has a linear
factor in Q[X]. This contradicts the assumption of Theorem 1.1. Conclude
from this contradiction that degy f =5 and f is general, as claimed.

As to the degree 5 case, the work of Debes and Fried [DF99] contains a
thorough study of counterexamples, where f can be even chosen as simple
as f(X,t) = h(X) —t, where h € Q[X].
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We now prove Theorem 1.2. If the curve f(X,t) = 0 has infinitely many
rational points (zo, ty) with ¢y € Z, then this curve has genus zero by Siegel,
see [Lan83, Chapter 8], [Sie29]. So in order to prove Theorem 1.2, we only
need to show that in an exceptional situation coming up in the proof of
Theorem 1.1 for p = 5, the genus of f(X,t) = 0 is zero. So suppose that
A = S5 and U = S;. Then the action of A on A/V is the action on the
2-sets, see Lemma 7.1. (Note that if & = 1 in this Lemma, then U and
V' are conjugate, hence in particular the genera of the fixed fields of U and
V' are the same. But the genus of the fixed field Q(z) of V' is zero.) For
o€ A=S; let indy(o) (or indy(c)) be 5 = [A: U] (or 10 = [A : V])
minus the number of orbits of <o> on A/U (or A/V). Let 01,09,...,0, be
a branch cycle description (see e.g. [Fri94] or [Miil96, Section 2| for definitions
and results) of the extension CL|C(t). The Riemann—Hurwitz genus formula
gives > indy (0;) = 2-([A : V]—1) = 18, because the fixed field of V', which is
C(z), has genus zero. The following table, which can easily be computed by
hand, gives the index function for representatives o of the conjugacy classes

of S5.

o |12 @2)B34)]123)](123)45)](1234)](12345)
ind; (o) | 0] 1 2 2 3 3 1
indy(c) |0 3 4 6 7 7 8

We notice that indy (o) < indy(0)/2 for all 0 € S5. Let e be the genus
of the fixed field of U. The genus formula then gives

(5-1+e)=> indy(o;) < %Zindv(ai) =9,

hence e = 0, which is the genus of the curve f(X,¢) = 0, and the claim
follows.

9 Further directions

Theorems 1.1 and 1.2 still hold when we replace Z by a finitely generated
Z—algebra in Q. The only essential change is that we need to replace the
classical Siegel theorem by the more general theorem of Siegel-Mahler-Lang,
which handles algebraic curves with infinitely many point with coordinates
in such a Z-algebra, see [Lan83, Chapter 8§].
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There are three obvious ways to lessen the assumptions in the Theorems
1.1 and 1.2. Namely

(a) Weakening the assumptions on the Galois group of f(X,t) over Q().
(b) Replacing Q by a number field.
(c) Instead of specializing in Z, consider specialization in Q.

Of course, each of the points (a), (b), and (c) can be combined, yielding
configurations of increasing difficulty to analyze. We shortly comment on
these points.

To (a). Most of the group theoretic setup and immediate consequences
still hold if we only assume that Gal(f(X,t)|Q(t)) is primitive, however the
group theoretic analysis requires considerably more work. In particular, the
classification of the finite simple groups proves indispensable for this analysis.

There are certain families of examples showing that we cannot simply re-
place the prime degree or generality assumption by primitivity. As a sample,
we give the following construction.

Theorem 9.1. Let 2 < k < n—2 be integers with 2k # n. Then there exists
an irreducible polynomial f(X,t) with degy f = (Z) and primitive Galois
group over Q(t), such that there are infinitely many ty € Z such that f(X,to)
is reducible without a linear factor.

Proof. The proof is a sort of inversion of the arguments in the general case,
but with the special feature that U and V interchange their roles! Let A
be the symmetric group on n letters {1,2,...,n}, and ¢(Z) € Z[Z] be a
polynomial of degree n such that the Galois group of g(Z) — t over Q(¢) is
A. (Such polynomials are very easy to construct — for instance the Morse
polynomial g(Z) = Z™ — Z will do it, see [Ser92, Theorem 4.4.1], or g(Z) =
Zm — 7" 1 see [Ser92, page 42].) Let U be the setwise stabilizer in A of a
subset of size k in {1,2,...,n}. We first show that U is a maximal subgroup
of A. Let M be a subgroup of A = S,, which properly contains U = Si X .S, _.
So M is transitive on {1,2,...,n}. As 2k # n, we see that the group M
is even primitive, as it does not admit a nontrivial system of imprimitivity.
(For suppose that there is a non—trivial block system. Without loss there is
a block A which contains at least two of the digits 1,2,...,%k. Then each
of these digits has to be contained in A, as S is doubly transitive on these
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digits. The same reasoning then shows that the remaining digits k+1,...,n
constitute a block A’. But there is an element in M which does not fix
A, so it must interchange A and A’. Hence k = |A| = |A'| = n—k, a
contradiction.) Also, M obviously contains a transposition (because even U
does), so M = S,, by [Wie64, 13.3]. Thus U is a maximal subgroup of A.

Let L be a splitting field of g(Z) — ¢ over Q(¢) and let z be a root of
g(Z) —t. Let f(X,t) be a minimal polynomial of a generator = of the fixed
field of U over Q(¢). Then Gal(L/Q(z)) acts on the conjugates of = over
Q(t) as S,_1 acts on S,,/(Sk X S,_k). The latter action is intransitive (with
two orbits, one of length (";1), the other one of length (Z:})) Moreover, as
2 <k <n—2, it has no fixed point. This means that f(X, ) is reducible
over Q(z) but has no linear factor. Conclude that f(X,g(Z)) is reducible
over Q(Z) but has no linear factor.

Let f;(X,Z) be the irreducible factors of f(X,¢g(Z)). By Hilbert’s irre-
ducibility theorem, there are infinitely many zo € Z such that all f;( X z)
are irreducible. For these zy set tg = g(z0) € Z, and we have that f(X, o) is
reducible without a linear factor. ]

Remark. There are other examples besides the given one. However, if we
assume that A = Gal(f(X,?))|Q(t) is primitive, then there are only very few
possibilities for the composition factors of A. Work on this is in progress.

It can be shown that the genus of the curve f(X,¢) = 0 in the example
above can be made arbitrarily large (with growing n).

As to (b). If we assume n # 4, then in the general case actually we need
not work over Q. The only difference coming in is the structure of g. Again g
has two poles (or is a polynomial), but they no longer need to have the same
order. So we still get an inertia generator o with at most 2 orbits on A/V.
Lemma 5.7 handles this case. Also, the arguments go through without change
if Gal(f(X,t)|K(t)) is alternating rather than symmetric. So we indeed get
the more general

Theorem 9.2. Let K be a number field, and f(X,t) € K[X,t] be an irre-
ducible polynomial of X —degree # 4,5, such that Gal(f(X,t)|K(t)) is the al-
ternating or symmetric group in the natural representation. Let R be a finitely
generated Z—subalgebra of K. Then there are only finitely many ty € R, such
that f(X,ty) € K[X] is reducible without a linear factor.
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The prime degree case is harder, and there are numerous examples which
show that we indeed cannot simply replace Q by a number field. These
examples can be classified, but require a considerable amount of work and
the classification of the finite simple groups. Work on this is in progress too.

As to (c). Here the theorem of Siegel-Mahler-Lang has to be replaced
by Falting’s theorem, that there are only finitely many rational points on an
algebraic curve of genus > 1. The Galois theoretic translation requires ob-
vious modifications. In particular, instead of the field Q(z) we can have the
function field of an elliptic curve of positive Mordell-Weil rank. But even if
we still have rational fields, we of course do not have any information about
the ramification of Q(z) over Q(b(2))), there are no constraints. Still, we can
use the Riemann—Hurwitz genus formula to analyze the configurations, and
the branch cycle argument to eliminate many cases. We have just begun an-
alyzing this configuration. The analysis is already very difficult if we assume
only that A is a symmetric group in the natural action.

Remark 9.3. Let f(X,t) € Q[X,t] be irreducible. Instead of looking for
specializations ty € Z with f(X, o) still irreducible, one could also ask for the
stronger property that Gal(f(X,t)|Q(t)) = Gal(f(X,1y)|Q). Here, however,
the analog of Theorem 1.1 is not true in the prime degree case, nor in the
general case. For set hp(X) = X" (X — 1) — 0 for a variable . The
ramification of hy(X) shows that A := Gal(h(X,0)|Q(#)) contains an n—
cycle, an (n—1)—cycle, and a transposition, see [Ser92, page 42]. The first two
elements force A to be doubly transitive, so A contains all transpositions of
the roots of hy(X), hence A = S,,. One easily computes the X—discriminant
of hy(X): disx he(X) = 0" 2(0 + d), for some 0 # ¢,d € Q. (The actual
values of ¢ and d are easy to compute, but are irrelevant here.) Rewrite
disy hg(X) = 0" 10 +d)/0 and set t :==d/0, f(X,t) :=tX"H(X - 1) —d.
So Gal(f(X,t)|Q) < A, if and only if ¢(1+1/¢y) is a square in Q. Of course,
there are infinitely many such t, € Z, for instance t; = c;cok? — 1, where
c1, co are numerator and denominator of ¢ respectively, and &k runs through
the integers. On the other hand, f(X, o) is reducible only for finitely many
integers ty by the results in this paper.

19



References

[Bil96]

[DF99]

[DMO6]

[DZ98)

[Fri74]

[Frio4]

[Fri95]

[Gor68]

[HBs2]

[Hup67]

[Lang3]

[Miil96]

[Neu72]

[Ser92]

Y. Bilu, A note on universal Hilbert sets, J. Reine Angew. Math.
(1996), 479, 195-203.

P. Debes, M. D. Fried, Integral specialization of families of rational
functions, Pacific J. Math. (1999), 190(1), 45-85.

J. D. Dixon, B. Mortimer, Permutation Groups, Springer—Verlag,
New York (1996).

P. Debes, U. Zannier, Universal Hilbert subsets, Math. Proc. Cam-
bridge Philos. Soc. (1998), 124, 127-134.

M. Fried, On Hilbert’s irreducibility theorem, J. Number Theory
(1974), 6, 211-231.

M. Fried, Review of Serre’s ‘Topics in Galois Theory’, Bull. Amer.
Math. Soc. (N.S.) (1994), 30(1), 124-135.

M. Fried, FEatension of constants, rigidity, and the Chowla—
Zassenhaus congjecture, Finite Fields Appl. (1995), 1, 326-359.

D. Gorenstein, Finite Groups, Harper and Row, New York-
Evanston-London (1968).

B. Huppert, N. Blackburn, Finite Groups III, Springer—Verlag,
Berlin Heidelberg (1982).

B. Huppert, Endliche Gruppen I, Springer—Verlag, Berlin Heidel-
berg (1967).

S. Lang, Fundamentals of Diophantine Geometry, Springer—Verlag,
New York (1983).

P. Miiller, Reducibility behavior of polynomials with varying coeffi-
cients, Israel J. Math. (1996), 94, 59-91.

P. M. Neumann, Transitive permutation groups of prime degree, J.
London Math. Soc. (2) (1972), 5, 202-208.

J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston
(1992).

20



[Shi74] K. Shih, On the construction of Galois extensions of function fields
and number fields, Math. Ann. (1974), 207, 99-120.

[Sie29] C. L. Siegel, Uber einige Anwendungen diophantischer Approzima-
tionen, Abh. Pr. Akad. Wiss. (1929), 1, 41-69, (=Ges. Abh., I,
209-266).

[V6196] H. Vélklein, Groups as Galois Groups — an Introduction, Cambridge
University Press, New York (1996).

[Wie64] H. Wielandt, Finite Permutation Groups, Academic Press, New
York London (1964).

[Zan96] U. Zannier, Note on dense Hilbert sets, C. R. Acad. Sci. Paris Sér.
I Math. (1996), 322, 703-706.

IWR, UNIVERSITAT HEIDELBERG, IM NEUENHEIMER FELD 368,
D-69120 HEIDELBERG, GERMANY
E-mail: Peter .Mueller@iwr.uni-heidelberg.de

21



