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On Euler’s magic matrices of sizes 3 and 8

by

Peter Müller

Abstract. A proper Euler’s magic matrix is an integer n×n matrix M ∈ Zn×n such
that M ·M t = γ ·I for some nonzero constant γ, the sum of the squares of the entries along
each of the two main diagonals equals γ, and the squares of all entries in M are pairwise
distinct. Euler constructed such matrices for n = 4. In this work, we use multiplication
matrices of the octonions to construct examples for n = 8, and prove that no such matrix
exists for n = 3.

1. Introduction. A classical magic square is an n × n matrix A with
distinct nonnegative integer entries such that the sums of the entries in each
row, each column, and both main diagonals are the same.

If one requires in addition that the entries of A are square numbers, then
A is called a magic square of squares; see [2, 14]. It is an open problem
whether a magic square of squares of size 3 exists, despite considerable effort
on this question in [3, 4].

Leonhard Euler looked at the question for n = 4. He noticed that orthog-
onal matrices, or slightly more general matrices M such that M ·M t = γ · I,
could make the problem easier, for if A is the matrix whose entries are the
squares of those of M , then the conditions on the row and column sums
for A are automatically fulfilled. So one is faced with only two polynomial
conditions for the two main diagonals, and the added requirement that the
entries of A are pairwise distinct.

Definition 1.1. Let R be a commutative ring and n be a positive integer.
A matrix M = (mi,j)1≤i,j≤n ∈ Rn×n is called an Euler’s magic matrix over
R if the following holds for some γ ∈ R \ {0}, where In denotes the n × n
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identity matrix:

M ·M t = γ · In,(1)
n∑

i=1

m2
i,i = γ,(2)

n∑
i=1

m2
i,n+1−i = γ.(3)

If in addition the squares of the entries in M are pairwise distinct, then we
call M a proper Euler’s magic matrix.

Note that the sum in (3) is the sum of the squares of the elements on the
anti-diagonal. As remarked above, if M is a proper Euler’s magic matrix,
then A = (ai,j)1≤i,j≤n with ai,j = m2

i,j is a magic square of squares.
The case n = 2 is easy to work out: the only Euler’s magic 2×2 matrices

have the form(
a a

a −a

)
,

(
a a

−a a

)
,

(
a −a

a a

)
,

(
−a a

a a

)
.

In particular, there are no proper such cases.
Euler studied the intriguing problem of whether a proper Euler’s magic

matrix exists for n = 4, referring to it as a “problema curiosum”. In fact, he
managed to produce a multi-parameter family of such matrices. A particular
case, due to Euler too, is

M =


68 −29 41 −37

−17 31 79 32

59 28 −23 61

−11 −77 8 49

 .

A more systematic study for the case n = 4, based on the algebra of quater-
nions, was given by Hurwitz [7, Vorlesung 12]. See [2], [13] and in particular
[10] and [11, Lecture 12] for the history of this problem and its connection
with the Hamilton quaternions.

In Section 2 we show this negative result concerning 3× 3 matrices:

Theorem 1.2. There is no Euler’s magic matrix in Q3×3.

It is perhaps surprising that n = 3 is the only positive integer for which
there is no Euler’s magic matrix in Qn×n. In fact, in Section 4 we provide
a simple construction of Euler’s magic matrices in Zn×n for each n ̸= 3.
However, these matrices are far from proper. In particular, we do not know
whether a proper Euler’s magic matrix exists for n = 5. Section 4 contains
some examples which come close.
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In Section 3 we examine the case n = 8. In [12, 13], Ísabel Pirsic sug-
gested using certain matrices coming from left and right multiplication of the
octonions to find a construction analogous to Euler’s for n = 4. However,
a massive search by her did not bring an example. In this note, we demon-
strate that a careful analysis of the polynomial system yields solutions with-
out much searching. So Pirsic’s suggestion to use octonion multiplication
matrices proved helpful.

In order to describe our results (and later the methods), we introduce
the matrices

L(a, b, . . . , h) =



a −b −c −d −e −f −g −h

b a −d c −f e h −g

c d a −b −g −h e f

d −c b a −h g −f e

e f g h a −b −c −d

f −e h −g b a d −c

g −h −e f c −d a b

h g −f −e d c −b a


and

R(p, q, . . . , w) =



p −q −r −s −t −u −v −w

q p s −r u −t −w v

r −s p q v w −t −u

s r −q p w −v u −t

t −u −v −w p q r s

u t −w v −q p −s r

v w t −u −r s p −q

w −v u t −s −r q p


.

With respect to a suitable basis of the octonions O over the real numbers,
L(a, b, . . . , h) describes the left multiplication O → O, z 7→ xz, where x
has the coefficients a, b, . . . , h. Likewise, R(p, q, . . . , w) describes the right
multiplication O → O, z 7→ zx, where x has coefficients p, q, . . . , w.

The reason that we use different letters for the entries of L(·) and R(·) is
that the matrices we will study have the form M = L · R = L(a, b, . . . , h) ·
R(p, q, . . . , w). The point is that for arbitrary a, b, . . . , h, p, q, . . . , w we have
L · Lt = (a2 + b2 + · · · + h2) · I8 and R · Rt = (p2 + q2 + · · · + w2) · I8, and
therefore M ·M t = γ · I8 with γ = (a2 + b2 + · · ·+ h2)(p2 + q2 + · · ·+ w2).

Thus condition (1) in Definition 1.1 is automatically satisfied, and one
has “only” to discuss the two polynomial conditions (2) and (3) in the 16
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unknowns a, b, . . . , h, p, q, . . . , w, and the properness. A typical example that
we obtain is

Theorem 1.3. Set

L = L(2, 1, 1, 4, 2, 1, 1, −2),

R = R(−7, −55, −11, 1, −27, −13, −19, 4).

Then

M = L ·R =



142 197 −225 30 16 57 −13 −170

−37 −60 136 201 177 98 −32 −193

−283 −4 −148 −95 71 164 10 −1

−22 237 181 −178 138 −29 −45 −8

−120 97 27 74 −62 −129 293 −82

−9 38 −116 131 235 −144 0 187

−103 180 50 195 −163 64 −132 107

−126 −35 −51 −20 −42 −247 −191 −154


is a proper Euler’s magic matrix.

This single example arises from specializing the parameters of a 4-param-
eter family of Euler’s magic matrices to values which preserve properness.
In this case, the example was obtained from setting (q, r, t, u) = (−55,−11,
−27,−148) and rescaling in the following theorem.

Theorem 1.4. For variables q, r, t, u over Q set

X = 7q2 + 7r2 + 21qt− 7rt+ 34t2 − 7qu− 21tu+ 4u2 + 7q + 21r − 7u+ 34

and

L = L(2, 1, 1, 4, 2, 1, 1, −2),

R = R

(
3(t2 − 1)u

2X
, q, r, 1, t, u− q − 3t− 1, t− r − 3,

u2 −X

2u

)
.

Then M = L ·R is a proper Euler’s magic matrix over Q(q, r, t, u).

Remark 1.5. The reader who wishes to verify the examples need not
type these matrices. A proof is provided in the ancillary SageMath script
euler_verify.sage at [9]. This script can be run at the SageMathCell at
https://sagecell.sagemath.org/.

2. There are no Euler’s magic 3×3 matrices. If we look for Euler’s
magic n× n matrices for odd n over a field, then we may assume that these
matrices are orthogonal:

https://sagecell.sagemath.org/
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Lemma 2.1. Let K be a field, n be odd, and M ∈ Kn×n with M ·M t =
γ · In for 0 ̸= γ ∈ K. Then γ = λ2 for λ ∈ K, therefore 1

λ ·M is orthogonal.

Proof. Write n = 2k + 1. Taking the determinant of M · M t = γ · In
yields (detM)2 = γn = γ2k+1, so γ = λ2 for λ = detM/γk.

We use the following refinement of the Cayley transform which param-
etrizes orthogonal real matrices:

Proposition 2.2. Let M ∈ Rn×n be an orthogonal matrix. Then one
can write

DM = (In − S)(In + S)−1,

where S ∈ Rn×n is skew-symmetric and D ∈ Rn×n is a diagonal matrix with
diagonal entries in {−1, 1}.

Note that 0 is the only possible real eigenvalue of a real skew-symmetric
matrix, hence In + S is invertible for every real skew-symmetric matrix S.

Remark 2.3. This proposition was stated and proved (in a slightly dif-
ferent form) in 1991 by Liebeck and Osborne [8]. However, it had already ap-
peared 30 years earlier in [1, Chapter 6, Section 4, Exercises 7–11]. We briefly
sketch the argument: The Cayley transform S 7→ M = (In − S)(In + S)−1

is a bijection from the set of skew-symmetric matrices S ∈ Rn×n to the
set of orthogonal matrices M ∈ Rn×n for which −1 is not an eigenvalue.
This map is involutive in the sense that if M = (In − S)(In + S)−1, then
S = (In−M)(In+M)−1. All of this has been well known since Cayley’s time
(and is easy to verify). To prove the proposition, one needs to find D such
that −1 is not an eigenvalue of DM . Since DM + In = D · (M +D), this is
equivalent to M + D being invertible. But the existence of D follows from
an easy induction on n (for arbitrary M ∈ Rn×n); see, e.g., [6, Lemma 1].

We now prove Theorem 1.2. Let M ∈ Q3×3 be an Euler’s magic matrix.
Multiplying M by a nonzero rational preserves this property, so in view of
Lemma 2.1 we may assume that M is orthogonal. Moreover, the property
of M being an Euler’s magic matrix is preserved upon replacing rows by
their negatives. Thus, by Proposition 2.2, we may assume that

M = (I3 − S)(I3 + S)−1, where S =

 0 a b

−a 0 c

−b −c 0

 ∈ Q3×3.

With ∆ = det(I3 + S) = a2 + b2 + c2 + 1 we compute

M =
1

∆

 −a2 − b2 + c2 + 1 −2bc− 2a 2ac− 2b

−2bc+ 2a −a2 + b2 − c2 + 1 −2ab− 2c

2ac+ 2b −2ab+ 2c a2 − b2 − c2 + 1

 .
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The conditions (2) and (3) about the diagonal and the anti-diagonal are
D = E = 0 with

D = (−a2− b2+ c2+1)2+(−a2+ b2− c2+1)2+(a2− b2− c2+1)2−∆2

= 2(a4 − 2a2b2 + b4 − 2a2c2 − 2b2c2 + c4 − 2a2 − 2b2 − 2c2 + 1)

and

E = (2ac− 2b)2 + (−a2 + b2 − c2 + 1)2 + (2ac+ 2b)2 −∆2

= 4(−a2b2 + 2a2c2 − b2c2 − a2 + 2b2 − c2).

Now, while D and E look somewhat complicated, we get by some magical
calculation

D + E

2
= (a2 − 2b2 + c2 − 2)2 − 3(b2 + 1)2.

From D = E = 0 and the fact that 3 is not a square in Q we get b2 +1 = 0,
a contradiction.

Remark 2.4. Reducing to orthogonal matrices and using the Cayley
transform is quite natural and straightforward. But how could one have
guessed that D = E = 0 with D and E as above has no rational solution?
We sketch another, less “magical”, proof.

The first thing one might observe is that D and E are polynomials in
a2, b2, and c2, and that D and E are symmetric in a2 and c2. Thus we can
express D and E in terms of β = b2, s = a2 + c2, and p = a2c2. We obtain

D/2 = β2 − 2(1 + s)β + (1− s)2 − 4p,

E/4 = (2− s)β − s+ 2p.

Eliminating β from D = E = 0 yields

0 = 4p2 +
(
−8s2 + 16s− 8

)
p+ s4 − 4s3 + 12s2 − 16s+ 4

= 4(p− (s− 1)2)2 − 3(s− 2)2s2.

As 3 is not a square in Q, we get s = 0 or s = 2, and so p = (s−1)2 = 1. The
case s = 0 yields a2 + c2 = 0. Then a = c = 0, and therefore p = a2c2 = 0,
a contradiction.

In the other case we have a2 + c2 = s = 2 and a2c2 = p = 1, hence

(a2 − 1)2 + (c2 − 1)2 = (a2 + c2)2 − 2(a2 + c2) + 2− 2a2c2 = 0.

We get a2 = c2 = 1. This yields D/4 = b4 − 6b2 − 3 = (b2 − 3)2 − 12, but
there is no b ∈ Q with D = 0.

3. Euler’s magic 8 × 8 matrices. We look for 16 integers a, b, . . . , h,
p, q, . . . , w such that M =L·R with L=L(a, b, . . . , h) and R=R(p, q, . . . , w)
is a proper Euler’s magic matrix.
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As remarked in the introduction, we have

M ·M t = (a2 + b2 + · · ·+ h2)(p2 + q2 + · · ·+ w2)I8,

so (1) in Definition 1.1 holds with γ = (a2+b2+ · · ·+h2)(p2+q2+ · · ·+w2).
Thus the conditions (2) and (3) have to be studied. In the 3 × 3 case from
the previous section, it turns out that actually the sum of the equations (2)
and (3) has a useful property. Here again, it appears that the sum and the
difference of (2) and (3) have somewhat better properties.

Accordingly, with M = (mi,j)1≤i,j≤8, set

A(a, b, . . . , w) =
8∑

i=1

m2
i,i −

8∑
i=1

m2
i,9−i,

B(a, b, . . . , w) =
8∑

i=1

m2
i,i +

8∑
i=1

m2
i,9−i − 2γ.

Thus M is an Euler’s magic matrix if and only if A(a, b, . . . , w) = 0 and
B(a, b, . . . , w) = 0.

3.1. Some properties of A(a, b, . . . , w) and B(a, b, . . . , w). The strat-
egy is the following. We fix integers a, b, . . . , h and consider p, q, . . . , w as
variables. Then each entry of M = (mi,j) is a linear form in p, q, . . . , w, and
therefore A and B are homogeneous quadratic forms.

To ease the language, we call an arbitrary matrix proper if the squares
of its entries are pairwise distinct.

Also, it is obvious that if a matrix which depends on parameters is not
proper, then this is even more true if we specialize parameters.

So in order to start, we need to choose a, b, . . . , h ∈ Z such that M ∈
Z[p, q, . . . , w]8×8 is proper.

This for instance requires that a ̸=0 or h ̸=0, as m1,8−m8,1=2(aw−hp).
In fact, if two of the numbers a, b, . . . , h vanish, then M is not proper, as
one can easily check with a simple program.

But certain other choices of a, b, . . . , h are seen to be impossible even if M
is proper. For instance, M is proper for a = b = c = d = e = f = g = h = 1.
But in this case we get

A(p, q, . . . , w) = (p+ q + t+ u)(r + s+ v + w),

which forces p+ q + t+ u = 0 or r + s+ v + w. However,

m3,3 −m3,6 = 2(p+ q + t+ u),

m2,2 −m2,7 = 2(r + s+ v + w),

so no matter which factor vanishes, we see that the condition A(p, q, . . . , w)
= 0 forces M to be improper. The same happens (for other index pairs of M)
whenever all a, b, . . . , h are in {−1, 1}.
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However, if at least one of the integers a, b, . . . , h is different from ±1
(and assuming without loss of generality that gcd(a, b, . . . , h) = 1), it rarely
happens that the quadratic form A (or B) is reducible.

A necessary condition for A = B = 0 of course is that the quadratic forms
A and B are isotropic, and in fact that every linear combination λA + µB
is isotropic. However, that is a very weak condition, because we have more
than four variables, so the only condition is that λA+µB is isotropic over R.
But for random choices of a, b, . . . , h this is usually the case.

3.2. A naive search. If we eliminate one of the variables, w say, from
A = B = 0, then in general we will obtain a quartic form in p, q, . . . , v. Next,
if we specialize all but two of these variables to integers, then usually the
resulting curve in the remaining variables will be quartic. Many experiments
have shown that the rational points of this quartic are hard to analyze.
Despite having degree 4, its genus (if it is absolutely irreducible) will be at
most 1. (It is a known fact from algebraic geometry that if the intersection
of two quadratic surfaces in C3 is an irreducible curve, then its genus is at
most 1; see, e.g., [5, Lecture 22, Pencils of Quadrics].) However, in general
the curve will have no rational singularities which could help to transform
it into a cubic. But even in cases when there were rational singularities, and
furthermore the transformed cubic could be transformed into Weierstrass
normal form, the software like SageMath, Pari, or Magma was not able to
compute the Mordell–Weil rank of these curves in all cases we tried. The
easily computed torsion points led to no examples. Note that even if we
have a rational point on the curve, then w usually has degree 2 over Q,
because in general A has w-degree 2. And in most cases where we found
rational solutions of A = B = 0, the resulting matrix M was not proper.

In rare cases, however, we found valid solutions by this approach. For
instance, for

(a, b, . . . , h) = (0, 1, 1, 1, 1, 1,−1, 5),

(p, q, r, s, t) = (3,−2,−4, 5, 6),

the resulting system A(u, v, w) = B(u, v, w) = 0 has the rational solution
(u, v, w) = (13/15,−14/15,−23/5), which indeed gives, after rescaling, the
proper Euler’s magic square

L(0, 1, 1, 1, 1, 1,−1, 5) ·R(45,−30,−60, 75, 90, 13,−14,−69).

Finding a few examples like this required checking thousands of potential in-
teger tuples (a, b, . . . , h, p, q, r, s, t) of length 13. Here we used a combination
of backtracking and a greedy algorithm to find tuples (a, b, . . . , h, p, q, r, s, t)
of small integers such that the specialized matrix M ∈ Q[u, v, w]8×8 is still
proper. For if the integers are large, it is less likely that the system A = B = 0
has rational solutions (u, v, w).
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3.3. Too strong restrictions. As there are so many more variables
than equations, one might consider imposing strong restrictions to make the
polynomial system more manageable. For instance, one might pick 3 distinct
variables X,Y, Z ∈ {p, q, . . . , w}, and hope to specialize the remaining 13
variables to integers such that A(X,Y, Z) is 0 as a polynomial in X,Y, Z.

For instance, the coefficients in A of w2 and wp are 8(h− a)(h+ a) and
16ah, respectively. So if we want them both to vanish, then a = h = 0, in
which case M is not proper anymore.

So we cannot have {p, w} ⊂ {X,Y, Z}. Many other combinations fail for
the analogous reason. But some cases require a finer analysis.

3.4. A working restriction. The following compromise proved to be
fruitful. We look for conditions on a, b, . . . , h ∈ Z such that A and B both
have degree 1 in w. Assume this for a moment. Let x and y be the coefficients
of w in A and B, respectively. Then F = yA − xB is a cubic form F ∈
Z[p, q, . . . , v], where we have eliminated w.

Besides having lower degree, the added advantage is that a solution of
F = 0 with p, q, . . . , v ∈ Q extends to a solution of A = B = 0 provided that
x, y ̸= 0.

Fortunately, the condition for A and B to have w-degree ≤ 1 is rather
easy and not very restrictive: As noted above, the coefficient of w2 in A is
8(h−a)(h+a). So we need to pick h = ±a. Furthermore, the coefficient of w2

in B is, up to the factor −2, equal to b2+c2+d2+e2+f2+g2−3(a2+h2) =
b2 + c2 + d2 + e2 + f2 + g2 − 6a2. Thus A and B have w-degree ≤ 1 if and
only if h = ±a and b2 + c2 + d2 + e2 + f2 + g2 = 6a2.

As remarked previously, if a = h = 0, then M is not proper. Thus we
assume that

(4) h = ±a ̸= 0, b2 + c2 + d2 + e2 + f2 + g2 = 6a2.

Next let F = yA−xB be the cubic form in Z[p, q, . . . , v]. The idea is to find
a rational specialization of some of the variables p, q, . . . , v such that F will
have degree 1 with respect to one of these variables, because then we get an
immediate rational parametrization of F = 0 and hence of the solutions of
A = B = 0.

Note that (4) already implies that F has degree at most 2 in p, because
the coefficient of p3 in F is 32h · (b2 + c2 + d2 + e2 + f2 + g2 − 6a2) = 0.

Also, the coefficient of p2 in F has, up to the nonzero factor −128h2, the
useful form

(ag + bh)q + (−af + ch)r + (−ae+ dh)s

+ (ad+ eh)t+ (ac+ fh)u+ (−ab+ gh)v.

As h = ±a ̸= 0 and not both b and g vanish, we get ag + bh ̸= 0 or
−ab+ gh ̸= 0. So we can solve for q or v in terms of the remaining variables
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to find that F has degree at most 1 in p. Usually this degree equals 1, so we
can solve for p to make F vanish. Finally, provided that A and B after these
substitutions still have degree 1 in w, solving for w finally yields A = B = 0,
where now the entries of the matrix M are rational functions over Q in the
variables r, s, t, u and q or v.

This is essentially how we get the parametrization in Theorem 1.4, start-
ing with (a, b, . . . , h) = (2, 1, 1, 4, 2, 1, 1,−2).

Remark 3.1. The integer tuples (a, b, . . . , h) satisfying (4) can easily be
parametrized. So if we use such a parametrization instead of the specific
tuple like (2, 1, 1, 4, 2, 1, 1,−2) which led to Theorem 1.4, we can still carry
out the procedure. If we consider matrices over Q as equivalent if they differ
by a nonzero scalar factor, then we obtain an 8-parameter family of proper
Euler’s magic matrices for which Theorem 1.4 is just a subcase.

4. Improper Euler’s n × n magic matrices for n ≥ 4. Let σ be
an element of the symmetric group on {1, . . . , n}. We define the matrix
M(σ) = (mi,j) ∈ Zn×n by

mi,j =

{
1 if j = σ(i),

0 otherwise.

Note that M(σ) contains exactly one 1 in each row and column, hence
M(σ) ·M(σ)t = In.

Theorem 4.1. Set

σ =

{
(1 2 . . . n− 1)(n) if n is even,

(1 2 . . . k − 1)(k)(k + 1 k + 2 . . . n) if n = 2k − 1 is odd.

Then M(σ) is an Euler’s magic matrix.

Proof. We need to verify conditions (1)–(2), and (3). As M(σ) · M(σ)t

= In, condition (1) holds with γ = 1.
First suppose that n = 2k ≥ 4 is even. Then mi,i = 0 for 1 ≤ i < n and

mn,n = 1. Furthermore, mi,n+1−i = 1 if and only if i = k. We see that M(σ)
fulfills conditions (2) and (3).

Similarly, if n=2k − 1 is odd, then mk,k =1 and mi,i=0 if i ̸= k, and
mi,n+1−i=1 if and only if i= k. Again, M(σ) fulfills conditions (2) and (3).

Of course, these matrices are far from being proper. We have tried to
find proper Euler’s magic matrices for n = 5. The approach was to use
the Cayley transform as in the case n = 3. This results in two polynomial
conditions in 10 variables over Q. Or, after homogenization, we need to solve
two polynomials over the integers in 11 unknowns. As all variables appear in
a high degree, we basically tried a random search. Surprisingly, this way we
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obtained quite a few Euler’s magic matrices, and some of them came close
to properness. In fact, the following are Euler’s magic matrices, where the
squares of its entries give 24 distinct elements. In each case we highlight the
pair of entries which violates properness:

−106 −32 −8 −75 −50

−4 −38 −120 58 −35

24 20 −73 −88 80

61 66 −16 −46 −100

70 −115 20 −40 −18

 ,


4 3 40 −94 −142

−29 −128 −90 44 −58

154 28 −35 56 −42

74 −82 −10 −114 73

−24 82 −140 −61 2

 ,


−204 −38 10 −11 −312

54 −262 −260 36 −13

−84 102 −165 −306 48

291 102 −40 −56 −202

66 −223 210 −206 −2

 ,


29 −218 −370 −188 180

88 −384 22 158 −269

−160 58 −40 −333 −334

210 −139 304 −286 124

418 188 −147 −4 −146

 ,


−392 −336 −21 282 210

177 −384 −24 −392 240

408 −186 −246 357 −40

−48 −309 176 −42 −510

−192 14 −546 −168 −165

 .

A verification of these examples is again provided in [9].

Acknowledgements. I thank the anonymous referee for helpful com-
ments, including pointing out errors and suggestions that improved the
manuscript.
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