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Abstract

Let f(X) ∈ Q(X) be a rational function. For almost all primes
p we can reduce the coefficients of f and consider fp := f mod p
as a function on the projective line P1(Fp) = Fp ∪ {∞}. Here we
continue the arithmetic aspects of joint work with Guralnick and Saxl,
and classify the functions f such that fp is a bijection for infinitely
many primes p. This is the rational function analog of the classical
conjecture of Schur (1923), solved by Fried (1970), which considered
the case that f is a polynomial.

Thereby we also answer a question of J. G. Thompson about the
minimal field of definition of a certain rational function of degree 25.

1 Introduction

A classical problem going back to Schur [Sch23] is the following: Let f(X) ∈
Z[X] be a polynomial, which induces a permutation of the residue fields Z/pZ
for infinitely many primes. Then Schur conjectured (and proved this for
prime degree polynomials) that f is a composition of linear polynomials and
Dickson polynomials Dk(a,X), which are best defined implicitly by Dk(a, Z+
a/Z) = Zk + (a/Z)k for a ∈ Q. Schur’s conjecture has been proved by M.
Fried in [Fri70], see also [Tur95] and [Mül97]. The obvious generalization of
this question to number fields poses no difficulties, result and proof are the
same.

∗Supported by the DFG.
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In recent joint work [GMS97] with R. Guralnick and J. Saxl we inves-
tigated the rational function analog of this question over number fields K.
Let f(X) ∈ K(X) be a rational function, and Ok be the ring of integers of
K. Fix coprime polynomials r, s ∈ Ok[X] with f = r/s. The coefficients
of f = r/s can be reduced modulo all but finitely many prime ideals p of
Ok without making s trivial. Such a reduced function induces a map on the
projective line P1(Ok/p). We say that f is arithmetically exceptional if this
induced map is bijective for infinitely many prime ideals p.

It follows from this definition that if an arithmetically exceptional func-
tion is a composition a(b(X)) of two rational functions a, b ∈ K(X), then a, b
are also arithmetically exceptional. (In contrast to the polynomial case, the
converse does not hold even over Q, see [GMS97, Corollary 7.4].) So we can
and do restrict to indecomposable functions. Define the degree of f ∈ K(X)
to be the maximum of the degrees of numerator and denominator in a re-
duced fraction. The degree is the same as the degree of the field extension
K(X)/K(f(X)).

The aim of this paper is to classify the arithmetically exceptional func-
tions over Q. This also answers a question of J. Thompson [Tho90] raised in
a different context.

The classification is in terms of the geometric monodromy group and
the branching type. Let f be such a function, then Gal(f(X) − t/C(t)) is
the geometric monodromy group of f , where Gal(f(X) − t/C(t)) denotes
the Galois group of R(X) − tS(X) over C(t), when f = R/S is a reduced
fraction of polynomials. Further, for the finitely many points b1, . . . , br ∈
C ∪ {∞} with |f−1(b)| < n = deg f let mi be the least common multiple
of the multiplicities of the points in the fiber f−1(bi). Then (m1, . . . ,mr) is
the branching type of f . The type, together with the geometric monodromy
group, usually gives precise information about the function f . See Section
3 for more details; in particular the numbers mi will be seen as the orders
of the elements of a very specific generating system of Gal(f(X) − t/C(t)).
The result, which completes work from [GMS97], is

Theorem 1.1. Let f ∈ Q(X) be an indecomposable rational function of
degree n which is arithmetically exceptional over Q. Set G := Gal(f(X) −
t/C(t)). Then one of the following holds, where p is an odd prime and Cm
denotes a cyclic group of order m.

(a) n = p, G is cyclic of type (p, p);
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(b) n = p ≥ 5, G is dihedral of type (2, 2, p);

(c) n = 4, G = C2 × C2 of type (2, 2, 2);

(d) n = p ∈ {5, 7, 11, 13, 17, 19, 37, 43, 67, 163}, G is dihedral of type

(2, 2, 2, 2);

(e) n = p2, G = (Cp × Cp) o C2 of type (2, 2, 2, 2);

(f) n = 52, G = (C5 × C5) o S3 of type (2, 3, 10);

(g) n = 52, G = (C5 × C5) o (C6 o C2) of type (2, 2, 2, 3);

(h) n = 32, G = (C3×C3)o (C4oC2) of types (2, 2, 2, 4) and (2, 2, 2, 2, 2);

(i) n = 28, G = PSL2(8) of types (2, 3, 7), (2, 3, 9), and (2, 2, 2, 3);

(j) n = 45, G = PSL2(9) of type (2, 4, 5);

While dealing with the arithmetic of case (g) above, we solve a question
raised by John G. Thompson [Tho90] about the minimal field of definition
of a certain rational function of degree 25.

Acknowledgment. I thank G. Malle and B. H. Matzat for a careful reading
of the manuscript.

2 Arithmetically exceptional rational

functions

Let B be a finite permutation group on Ω, and GEB be a transitive, normal
subgroup. We say that the pair (B,G) is exceptional, if none of the orbits
6= {ω} of a point stabilizer Gω is fixed by Bω. (This is of course independent
of the chosen point ω ∈ Ω.) This notion of exceptionality has first appeared
in arithmetic questions of finite fields, see [FGS93] and the literature given
there.

If the finite group A is acting on Ω, and GEA is transitive, then we say
that (A,G) is arithmetically exceptional, if there is a group B with G ≤ B ≤
A, such that (B,G) is exceptional and B/G is cyclic.

Now fix a number field K, and let f ∈ K(X) be a non–constant rational
function. Let t be a transcendental over K, and let L be a splitting field of
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f(X)−t over the rational function field K(t). Denote by K̂ the algebraic clo-
sure of K in L. Then A := Gal(L/K(t)) is called the arithmetic monodromy
group of f , and G := Gal(L/K̂(t)) is called the geometric monodromy group
of f . Except otherwise said, we regard A and G as permutation groups on
the roots of f(X) − t. We call K̂ the field of constants of f . Note that
A/G = Gal(K̂/K).

The following group–theoretic characterization of arithmetically excep-
tional functions is due to Fried [Fri78], see [GMS97, Theorem 2.1] for a short
proof.

Theorem 2.1. Let f , A, and G be as above. Then f is arithmetically ex-
ceptional if and only if the pair (A,G) is arithmetically exceptional.

Remark 2.2. The proof of this theorem in [GMS97] also characterizes the
prime ideals p modulo which the function f is bijective if it is arithmetically
exceptional. Namely there is a bound C such that if |Ok/p| > C, then such
an f is bijective modulo p if and only if (B,G) is exceptional, where B/G is
the decomposition group of a prime of K̂ lying above p.

3 Branch cycle descriptions in geometric mo-

nodromy groups

Let P1 = P1(C) be the Riemann sphere over the complex numbers. We keep
the notation from the previous subsection, and regard now f as a covering
map from P1 to P1. Let n be the degree of f . There is a finite set B :=
{b1, b2, . . . , br} ⊂ P1 of elements with less than n preimages. We call these
elements the branch points of f .

Fix a base point b0 ∈ P1 \ B, and denote by π the fundamental group
π1(P1 \ B, b0). Then π acts transitively on the points of the fiber f−1(b0)
by lifting of paths. Fix a numbering 1, 2, . . . , n of this fiber. Thus we get a
homomorphism π → Symn. By standard arguments (see [MM] or [Völ96]),
the image of π can be identified with the geometric monodromy group G
defined above, thus we write G for this group too.

This identification has a combinatorial consequence. Choose a standard
homotopy basis of P1 \ B as follows. Let γi be represented by paths which
wind once around bi clockwise, and around no other branch point, such that
γ1γ2 · · · γr = 1. Then γ1, γ2, . . . , γr−1 freely generate π.
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Definition 3.1. Let σ ∈ Symn. Then the index ind(σ) is defined to be n
minus the number of cycles in σ (where fixed points count as cycles too).

Let σi be the image of γi in Symn. If the points s1, . . . , sm in the fiber
of bi have multiplicities e1, . . . , em, respectively, then σi has cycle lengths
e1, . . . , em. We say that σi has cycle type 1a12a2 · · · , where ai is the number
of cycle lengths i. Note that ind(σi) = n− |f−1(bi)| = n−m.

The Riemann–Hurwitz genus formula (or a more elementary argument
using the derivative of f) gives the following basic relation:∑

i

ind(σi) = 2(n− 1) (1)

We call the r–tuple (σ1, σ2, . . . , σr) a branch cycle description of G, and
the unordered tuple (|σ1|, |σ2|, . . . , |σr|) the branching type of the branch cycle
description. Of course the orders of the σi do not specify the σi, but in most
cases where G is fixed the branching types distinguish between the various
possibilities for f .

Note that one can arbitrarily order the conjugacy classes of the σi using
an iteration of the elementary braiding operations Qi, i = 1, . . . , r−1, which
send the tuple (g1, g2, . . . , gr) to (g1, . . . , gi−1, gi+1, g

−1
i+1gigi+1, gi+2, . . . , gr).

The elements σi can also be seen as inertia group generators in a slightly
more general context. Let K be a field of characteristic 0, and L/K(t) be a
regular (i.e. K is algebraically closed in L) finite Galois extension with group
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G. For each ramified place Pi : t 7→ bi (or 1/t 7→ 0 if bi = ∞) let σi be
a generator of an inertia group of a place of L lying above Pi. There is a
natural choice of σi up to conjugacy. Namely set y := t − bi (or y := 1/t if
bi = ∞). There is a minimal integer e such that L embeds into the power
series field Q((y1/e)). For such an embedding, let σi be the restriction to L of
the automorphism of Q((y1/e)) which is the identity on the coefficients and
maps y1/e to y1/e exp(2π

√
−1/e). The non–uniqueness of the embedding of

L accounts for the fact that such σi are well–defined only up to conjugacy.
We call the conjugacy class of σi the distinguished conjugacy class associated
to bi.

Let E be a field between K(t) and L, and let ind(σi) refer to the permu-
tation action of G on the conjugates of a primitive element of E/K(t). Then
the genus g of E is given by∑

i

ind(σi) = 2([E : K(t)]− 1 + g). (2)

The well–known deficiency of this purely algebraic setup is the following:
Even for K = C there is no known algebraic proof that the σi can be chosen
with σ1σ2 · · ·σr = 1 and G = <σ1, σ2, . . . , σr>.

Subsequently, we will call a place (or branch point) K–rational (or simply
rational if K = Q) if bi ∈ K ∪ {∞}.

Sometimes one can read off from the branch cycle description whether
the function f is defined over certain fields using the so called branch cycle
argument, see [Völ96, 2.8] for a fuller version. Let G be a subgroup of A.
We call an element x ∈ G rational in A, if all powers σm with m prime to
|G| are conjugate to σ in A. Also, we call a conjugacy class of G rational in
A, if it consists of elements rational in A.

Theorem 3.2. Let K be a field of characteristic 0, and L/K(t) be a fi-
nite Galois extension with group A. Set n = [LK̄ : K̄(t)]. Then α ∈
Gal(LK̄/K(t)) permutes the branch points of LK̄/K̄(t) among themselves.
Let ζn be a primitive n–th root of 1, and m be an integer with α−1(ζ) = ζm.
Let Cb be the distinguished conjugacy class of inertia generators associated to
the place b of K̄(t). Then Cα(b) = α?(Cb)m, where α? is the conjugation map
g 7→ αgα−1 on G.

In particular, if b is K–rational, then the class Cb is rational in A.

A typical application is the following. Suppose f ∈ Q(X). Then the ab-
solute Galois group Gal(Q̄/Q) permutes the branch points, but also preserves
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their cycle types. So if there is a branch point whose cycle type appears only
once, then it must be rational. If the associated element σi is not rational in
G, then necessarily A > G.

4 Monodromy groups of arithmetically ex-

ceptional functions

The main group–theoretic result from [GMS97] is the following:

Theorem 4.1. Let A be a primitive permutation group of degree n and G
be a normal subgroup such that (A,G) is arithmetically exceptional. Further
suppose that G has a generating system σ1, σ2, . . . , σr with σ1σ2 · · ·σr = 1 and∑

ind(σi) = 2(n−1). Then one of the following holds, where type means the
branching type of the generating system.

(I) n = pe for a prime p, A ≤ N oGLe(p) with N = Fep is an affine group,
and one of the following holds:

(a) (i) n = p ≥ 3, G is cyclic of type (p, p); or

(ii) n = p ≥ 5, G is dihedral of type (2, 2, p); or

(iii) n = 4, G = C2 × C2 of type (2, 2, 2), A = A4 or S4.

(b) n = p or n = p2 for p odd, and

(i) G is of type (2, 2, 2, 2), G = N o C2, and n ≥ 5; or

(ii) G is of type (2, 3, 6), G = N o C6, and n ≡ 1 (mod 6); or

(iii) G is of type (3, 3, 3), G = N o C3, and n ≡ 1 (mod 6); or

(iv) G is of type (2, 4, 4), G = N o C4, and n ≡ 1 (mod 4).

(c) (i) n = 112, G is of type (2, 3, 8), G/N ∼= GL2(3) and A =
AΓL1(112); or

(ii) n = 52, G is of type (2, 3, 10), G/N = S3 and A/N ∼= S3×C4;
or

(iii) n = 52, G is of type (2, 2, 2, 4), G/N is a Sylow 2-subgroup of
the subgroup of index 2 in GL2(5), and A/G has order 3 or
6; or

(iv) n = 52, G is of type (2, 2, 2, 3), G/N = C6 o C2 and A/G is
cyclic of order 2 or 4; or
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(v) n = 32, G is of type (2, 4, 6), (2, 2, 2, 4), (2, 2, 2, 6), or
(2, 2, 2, 2, 2), G/N = C4 o C2 and A/G has order 2; or

(vi) n = 24, G is of type (2, 4, 5) or (2, 2, 2, 4), G/N = C5 o C2,
and A/G has order 3 or 6.

(II) (a) n = 28, G = PSL2(8) is of type (2, 3, 7), (2, 3, 9), or (2, 2, 2, 3),
and A = PΓL2(8).

(b) n = 45, G = PSL2(9) is of type (2, 4, 5), and either A = M10, or
A = PΓL2(9).

If we take a group G and a branch cycle description from this theo-
rem, then Riemann’s existence theorem implies the existence of a rational
function over some number field K with G as geometric monodromy group,
and branching given by the branch cycle description. However, two difficult
arithmetic problems are left. First, it is not clear how small we may take
K, in particular whether we may take K = Q. This is the descent prob-
lem encountered in the inverse Galois problem. Secondly, it is difficult to
get a hold on the arithmetic monodromy group A once we have fixed K and
f(X) ∈ K(X). So after having done all the group–theoretic work yielding the
above theorem, the question remains whether there are indeed arithmetically
exceptional functions with the data in the theorem.

The cases in (II) have been dealt with in [GMS97, Section 6] using variants
of the rational rigidity theorem, and they are shown to appear over Q. The
cases (I)(a)(i) and (I)(a)(ii) are very easy to deal with, and basically lead to
cyclic polynomials Xp and the Rédei functions (see [GMS97, Section 7]) in
the first case, and the Dickson polynomials in the second case. Case (I)(a)(iii)
appears also over the rationals, with the added feature that if A = Alt4, then
Q̂ can be any cyclic cubic extension of Q.

The four infinite series in (I)(b) are intimately connected with isogenies
of elliptic curves. A careful analysis is contained in [GMS97]. We want to
remark that, as an alternative to the treatment in [GMS97], one can also
use the branch cycle argument Theorem 3.2 to show that the cases (I)(b)(ii),
(iii), and (iv) do not occur over the rationals. Section 5 contains information
concerning the first of these series, as we will need this setup to decide a
question of Thompson.

As to (I)(c): Only (vi) has been shown to not occur at all over any number
field K. Case (iv), which is the hardest, will be dealt with in Section 6.
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In the following we decide the existence over the rationals in all other
cases.

Cases (I)(c)(i) and (I)(c)(iii). In the first case the element of order
8 is not rational in A, and in the second case the element of order 4 is not
rational in A, so these cases do not occur by the branch cycle argument
Theorem 3.2.

Case (I)(c)(ii). The given tuple (σ1, σ2, σ3) is rigid in G. The elements
σ1 and σ2 are rational in G, and σ3 is rational in A. The values of the
irreducible characters of G at σ3 generate the cyclotomic field K = Q(ζ5),
where ζ5 is a primitive 5th root of unity. The rational rigidity criterion
thus gives a regular Galois extension L/K(t) with group G and branching
data given by the σi. The four conjugacy classes in G of elements of order
10 are permuted transitively by Aut(G), because A already permutes them
transitively. Thus L is Galois over Q(t), see [Völ96, Section 3.1.2]. One
obtains that A = Gal(L/Q(t)). Let U be a subgroup of index 25 in A, and
E the fixed field of U . Then A = GU , so E/Q(t) is regular. Further, the
Riemann–Hurwitz formula (2) shows that E has genus 0, and is even rational
because σ2 has a unique fixed point, and so E has a rational place. Thus
E = Q(x). Write t = f(x), and f is the desired rational function.

Case (I)(c)(v). Here we have four different kinds of branching types. In
the first one of type (2, 4, 6), we obtain that the associated triple of the σi is
rigid and consists of elements which are rational in G. So the usual rational
rigidity criterion shows that we cannot have A > G.

Now suppose that we have branching type (2, 2, 2, 4). Here indeed there
are arithmetically exceptional functions with this data. It seems to be diffi-
cult to exactly write them all down. Instead we give just one example, and
show in Appendix A how we got it (and how to possibly get others). Set

f(X) =
X(X4 − 8X3 + 12X2 − 48X − 28)2

(X2 − 2)4

and let F (X, Y ) ∈ Q[X, Y ] be the numerator of (f(X)− f(Y ))/(X − Y ) as
a reduced fraction. One verifies easily that f(X, 1) is irreducible over the
rationals (f(X, 1) is irreducible even modulo 3), so F (X, Y ) is irreducible
over Q, hence the arithmetic monodromy group A of f is doubly transitive.
On the other hand, one easily checks that F (X, Y ) factors (into two factors
of degree 4) over K := Q(

√
2), so the geometric monodromy group G is
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not doubly transitive. There are only 3 doubly transitive groups of degree 9
with a subgroup of index 2 which is not doubly transitive, namely AGL1(9),
M9, and AΓL1(9). From the branching over ∞ and 0 we see already that
G contains elements of cycle types 1142 and 1124. Now let β be a root of
2Z2 + 88Z + 343. The numerator of f(X) − β factors as (25X3 + 16X2 +
3βX2+100X+56−2β)(25X3−208X2−14βX2+702X+16βX+112−4β)2,
so f has two more branch points, and the inertia generators have cycle type
1323. None of the index 2 subgroups of AGL1(9) and M9 has elements of this
type, so we have A = AΓL1(9), and the only not doubly transitive subgroup
of A containing elements of the previous types is G = AΣL1(9).

From this function f we immediately get also a function corresponding
to the branching type (2, 2, 2, 2, 2). Namely note that f(X2) = g(X)2 for
g ∈ Q(X). It is easy to verify that f and g have the same pairs of arithmetic
and geometric monodromy group, and that the branching of g is as claimed.

Next suppose that we have branching type (2, 2, 2, 6). We are going to
show that this does not occur. To start with we need

Lemma 4.2. Let K be a field of characteristic 0, E be an elliptic curve and
ϕ : C → E be a K–rational morphism of finite degree of an algebraic curve C
defined over K of genus 1 to E. Then C is an elliptic curve.

Proof. Let J be the jacobian of C, and Φ : C → J be the map such that
Φγ ◦ Φ−1 is the translation map Tγ on J by a point Pγ depending on γ ∈
Gal(K̄/K). Set Ψ := ϕ ◦ Φ−1 : C → E . Without loss assume that Ψ maps a
fixed K–rational point 0J to a K–rational point 0E , and that 0J and 0E are
the zero elements of the respective additions on the elliptic curves. We get

Ψγ ◦ Tγ = Ψ.

So for Q a point on J , we get

Ψ(Q) = Ψγ(Q+ Pγ) = Ψγ(Q) + Ψγ(Pγ).

But Q = 0J shows Ψγ(Pγ) = 0E , hence Ψ = Ψγ for all γ ∈ Gal(K̄/K), so Ψ
and therefore also Φ is defined over K.

Now fix a branch cycle description (σ1, σ2, σ3, σ4) of type (2, 2, 2, 6), and
let K be the field of constants. Without loss let∞ correspond to the element
σ4 of order 6. Two of the involutions, say σ1 and σ2, are conjugate in G,
whereas σ3 is not conjugate to them. So the branch point corresponding to
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σ3 first has to be K–rational, but it is even Q–rational for otherwise (by
the branch cycle argument) an element of Gal(Q/Q) would interchange both
points corresponding to σ1 and σ2 with the one belonging to σ3, because σ1,
σ2, and σ3 are conjugate in A.

The group A has a subgroup U of index 4 with A = GU , so the fixed
field of U in L is a regular extension of Q(t). The action of A on A/U is the
dihedral group action, so there is precisely one group W between U and A
of index 2 in A. Using the Riemann–Hurwitz genus formula (2) we compute
that the fixed fields LU and LW of U and W both have genus 1. As ∞
is ramified in LW/Q(t), we get that LW = Q(t, x), where x2 = q(t) for a
cubic polynomial q ∈ Q[T ]. The zeros of q are the finite branch points of
f , so in particular q has a rational root, so the elliptic curve X2 = q(T )
has a rational point of order 2. The inclusion LW ⊂ LU induces a rational
morphism of a genus 1 curve with function field LU to X2 = q(T ) of degree
2. By the preceding lemma, LU is thus the function field of an elliptic curve.
Let (z, v) be a generic point on this curve with equation z2 = q′(v) for some
cubic polynomial q′. Then LU = Q(z, v). By the immediate part of [GMS97,
Lemma 5.3], the isogeny of degree 2 gives t = R(v), where R ∈ Q(V ) has
degree 2. But then we get the quadratic extension Q(v) of Q(t) inside LU
(and different from LW , for instance because the genus is different), contrary
to the fact that W is the unique group properly between U and A.

5 Rational functions with branching type

(2, 2, 2, 2)

Throughout this section let K be a field of characteristic 0. We call a ra-
tional function a (2, 2, 2, 2)–function if it has exactly 4 branch points, and
branching type (2, 2, 2, 2). The following proposition gives a characterization
of indecomposable (2, 2, 2, 2)–functions of odd degree. The easy extension to
the decomposable case (which we don’t need here) is left to the reader.

Proposition 5.1. Let f ∈ K(X) be a (2, 2, 2, 2)–function of odd degree n
which is indecomposable over K. For a transcendental t let A := Gal(f(X)−
t/K(t)) and G := Gal(f(X) − t/K̄(t)) be the arithmetic and geometric
monodromy group, respectively. Then f has degree pm with a prime p and
m ∈ {1, 2}, A = Fmp oH with H ≤ GLm(p), and G = Fmp o<−1>.

11



Proof. We have G = <σ1, σ2, σ3, σ4> with inertia generators σi of order 2,
and σ1σ2σ3σ4 = 1. From σ1σ2 = σ−14 σ−13 we see that the σi act by inversion
on σ1σ2. For i 6= j set Ti,j = <σiσj>. We see as before that the σk act by
inversion on Ti,j. Note that T1,2 = T3,4, and so on. Also, σ1σ2 commutes with
σ1σ3. From that we see that the normal subgroup N of G which is generated
by the Ti,j is abelian and actually generated by σ1σ2 and σ1σ3. Also, N has
index 2 in G, and therefore is transitive (there are at most 2 orbits, they
have the same lengths, but the degree is odd.) Note that f indecomposable
implies that A is primitive, so every non–trivial normal subgroup of A is
transitive. Hence N is even normal in A, for otherwise N would embed into
the direct product of the groups G/Na for a running through A, so N were
a 2–group, contrary to odd degree. So N is a minimal and hence elementary
abelian p–subgroup of A, which is generated by two elements. Thus A embeds
naturally into the affine general linear group AGLm(p) for m = 1 or 2, and
the action of the σi on Fmp is of the form x 7→ −x+ ti for ti ∈ Fmp . (Note that
by the Riemann–Hurwitz formula (1), each σi has exactly one fixed point.)
In particular, G = Fmp o<−1>.

Remark 5.2. (A,G) is arithmetically exceptional if and only if H contains
an element which has neither 1 nor −1 as eigenvalue.

We now relate the arithmetic monodromy group A to the arithmetic of
elliptic curves. For the applications in this paper we need only the case where
one of the branch points is K–rational. A linear fractional change of f over
K can move this point to infinity, but does not affect A. Thus suppose that
∞ is one of the branch points of f . Also, we may and do assume that the
unique simple point in the fiber f−1(∞) is also ∞. Accordingly, write

f(X) =
R(X)

S(X)2

with R, S ∈ K(X), degR = n, degS = (n − 1)/2. We may assume that R
and S are monic. Let λi be the 3 finite branch points of f , and µi be the
simple point in the fiber of λi. Set qλ(X) = (X−λ1)(X−λ2)(X−λ3) ∈ K[X]
and qµ(X) = (X − µ1)(X − µ2)(X − µ3) ∈ K[X]. We have

f(X)− λi = (X − µi)
Qi(X)2

S(X)2

12



for Qi(X) ∈ K̄[X]. The roots of the monic polynomial Q1(X)Q2(X)Q3(X)
are the roots of the monic numerator of the derivative of f , thus

Q1(X)Q2(X)Q3(X) = f ′(X)S(X)3,

hence
qλ(f(X)) = qµ(X)f ′(X).

From that we see that the morphism

(x, y) 7→ (f(x), yf ′(x))

induces a K–rational isogeny of degree n of the elliptic curve Eµ : Y 2 = qµ(X)
to Eλ : Y 2 = qλ(X).

The interesting question in this context is the structure of A, or more
precisely, the field of constants of f . In [GMS97, Proposition 5.4] we prove
that the field of constants is generated over K by the X–coordinates of the
finite points in the kernel of φ, where φ : Eµ → Eλ is the associated isogeny.
But these X–coordinates are just the roots of the polynomial S. Hence we
get

Proposition 5.3. Let f be a (2, 2, 2, 2)–function as above, and K̂ be the
algebraic closure of K in a normal closure of K(x)/K(f(x)). Then K̂ is the
splitting field of S(X) over K.

Note that A1/G1 can be naturally identified with Gal(K̂/K). On the
other hand Gal(K̂/K) acts on the elements of the kernel of φ, which is an
Fp–space of dimension m, thus Gal(K̂/K) maps into GLm(p). The induced
action on the X–coordinates of these kernel elements is just the action of A1

on Fmp /<−1> (this follows from the proof of [GMS97, Proposition 5.4]), so
we get the following

Corollary 5.4. Let f be a (2, 2, 2, 2)–function as above. Then f is arith-
metically exceptional if and only if Gal(S(X)/K) contains an element which
does not fix a root of S(X).

Remark 5.5. If the degree of f is a prime p (so m = 1 in our notation), then
the condition on S is easily seen to be equivalent to S(X) having no root in
K. For m = 2, a typical situation where the condition holds is when S(X)
is irreducible over K. Using Hilbert’s irreducibility theorem and a theorem
of Weber, one can easily construct for each odd p a function f of degree p2

such that S is irreducible over K, see [GMS97, Proposition 5.6].
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Let K be a number field. It is amusing to give a direct proof of the
permutation property of the functions f from the Corollary without going
the detour over the group–theoretic equivalence of arithmetic exceptionality.
Note that if the Galois group of S(X) contains an element which fixes no
root, then S(X) has no root modulo infinitely many primes by Chebotarëv’s
density theorem. Thus we get a direct proof of the Corollary from

Proposition 5.6. Let K be a number field, and p be a prime of K, such
that f , S, and the associated elliptic curves can be reduced modulo p. (That
of course is possible for all but finitely many primes.) Let Kp be the residue
field of the prime p. If S(x) modulo p has no root in Kp, then f mod p is
bijective on Kp ∪ {∞}.

Proof. We work over the field Kp, and understand the coefficients of f , S and
so on being reduced modulo p, so as being in Kp. The hypothesis gives that
f(∞) = ∞, and f(a) 6= ∞ for a ∈ Kp. So we only need to show injectivity
on Kp.

Let Eµ and Eλ be the elliptic curves Y 2 = qµ(X) and Y 2 = qλ(X),
respectively. Suppose there is a, b ∈ Kp, a 6= b, such that f(a) = f(b).
Then there are u, v in a quadratic extension of Kp such that P := (a, u)
and Q := (b, v) are in Eµ(K ′), where K ′ is the quadratic extension of Kp.
Let T 7→ T̄ be the involutory automorphism on the K ′–rational points on Eµ
and Eλ induced by the Frobenius generator of Gal(K ′/Kp), respectively. This
Galois action commutes with the isogeny φ. By the assumption, the points
φ(P ) = (f(a), uf ′(a)) and φ(Q) = (f(b), vf ′(b)) have the sameX–coordinate,
so their Y –coordinates differ by at most a sign, so may be assumed to be
equal by possibly replacing v by −v. Thus there is ε = −1 or 1, such that
φ(P ) = εφ(P ) and φ(Q) = εφ(Q). Note that P −Q is in the kernel of φ, and
that (P −Q) = ε(P −Q), thus P −Q has X–coordinate in Kp, so is a root
of S, contrary to the hypothesis.

5.1 Rational isogenies of degree 5

If f ∈ Q(X) is a function of branching type (2, 2, 2, 2), and n = deg f is a
prime, then we get a rational isogeny of an elliptic curve over Q of degree
n. According to a result of Mazur [Maz78, Theorem 1], this can happen
only for a few values of n. This is the reason for the short list of primes in
Theorem 1.1(e). In Section 6 we have to look closer at the case n = 5. There
are infinitely many elliptic curves admitting an isogeny of degree 5, however

14



the possible j–invariants are restricted by the following: If φ : E → E ′ is
an isogeny of elliptic curves (everything defined over Q), then there is an
absolutely irreducible polynomial (modular equation) Fn(J, J ′) ∈ Q[J, J ′] of
degree n + 1 in each variable, such that Fn(j, j′) = 0, where j and j′ is
the j–invariant of E and E ′, respectively (see [Sil94, Chapter III,§6]). Now
suppose that n = 5. Then F5 admits a rational parametrization as follows,
see [Fri22, Viertes Kapitel]:

J =
(T 2 + 10T + 5)3

T

J ′ =
(T ′2 + 10T ′ + 5)3

T ′
with TT ′ = 125.

One can write T = R(J, J ′)/S(J, J ′) with R, S ∈ Q[J, J ′]. So, as we have
to have rational values for j and j′, the corresponding parameter is rational
except for those pairs (j, j′) for which R and S vanish. One computes that in
these cases j = j′ ∈ {1728,−32768, 287496,−884736}, and verifies directly
(e.g. using the Maple package apecs for computations with elliptic curves
[Con97]) that we cannot have rational isogenies of degree 5 in these cases.

Conversely, if an elliptic curve has a j–invariant of the form (η2+10η+5)3

η
for

some non–zero rational η, then one can compute that the 5th division poly-
nomial has a factor of degree 2. So the curve has a 5–division point P whose
X–coordinate has degree at most 2 over Q. One easily checks that the group
generated by P is Galois invariant, so dividing by this group gives a rational
isogeny of degree 5.

Summarizing, we get

Proposition 5.7. Let j be the j–invariant of an elliptic curve over Q. Then

the curve admits a rational isogeny of degree 5 if and only if j = (η2+10η+5)3

η

for some non–zero rational η.

In order to determine the field of constants, we also need

Proposition 5.8. Let f(X) = R(X)/S(X)2 be a (2, 2, 2, 2)–function of de-
gree 5 as above, qλ(X), qµ(X) be the associated cubic polynomials. Let j be

the j–invariant of Y 2 = qλ(X). Then j = (η2+10η+5)3

η
for some non–zero

rational η, and the field of constants of f is Q(
√

5(η2 + 22η + 125)).

Proof. f induces an isogeny φ from Y 2 = qµ(X) to Y 2 = qλ(X). Let φ̂ be the

dual isogeny. Then Φ := φ̂◦φ is the multiplication by 5 map on Y 2 = qµ(X).

15



The kernel of φ of course is contained in the kernel of Φ, so S(X) is a divisor
of the 5–th division polynomial of Y 2 = qµ(X). By the previous proposition,

we may assume that j = (η2+10η+5)3

η
. Let j′ be the j–invariant of Y 2 = qµ(X).

Then j′ = (η′2+10η′+5)3

η′
with η′ = 125/η. Knowing j′, we can compute the

discriminant of S(X). It is, up to a square factor, equal to 5(η2 + 22η+ 125).
The result follows.

6 Application to a question of Thompson

As mentioned already in Section 4, it is usually a difficult problem to decide
whether rational functions f(Z) ∈ C(Z) with specific geometric monodromy
groups (and branching data) are defined over certain small fields. In [Tho90]
Thompson proposes the project to determine the cases where f is already
defined over the rationals, and adds “. . . , an analysis which may require
several years of hard work.” Specifically, he investigates the case of a certain
degree 25 function, but has to leave undecided the question about small fields
of definition. The purpose of this section is to give a different approach and
to settle this question. We give the method in reasonably complete detail,
as it works also in many other instances. As this function also appears in
Theorem 4.1(I)(c)(iv) as a possible candidate of an arithmetically exceptional
function, we give more details in order to also show existence of examples
with the correct pair of arithmetic and geometric monodromy group.

6.1 Thompson’s question, group–theoretic
preparation

Let W = AΓL(1, 25) be the affine semi–linear group acting on the elements
of the finite field F25. Thus W = T o (S o F ), where T is the group of
translations x 7→ x + t, S is the group of scalar multiplications x 7→ ax for
non–zero a, and the group F of order 2 is generated by the Frobenius map
x 7→ x5.

For i a divisor of 24, denote by S(i) the subgroup of S of order i, and set
W(i) := T o (S(i) oF ). So W(24) = W . Set G := W(6), and note that W/G is
cyclic of order 4.

Let β be an element of order 12 in F∗25, and define elements σ1, σ2, σ3,
σ4 ∈ G as follows:
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σ1 : x 7→ β20x

σ2 : x 7→ −x+ β

σ3 : x 7→ −β20x5 + β

σ4 : x 7→ x5

One immediately verifies that these σi generate G, and that σ1σ2σ3σ4 = 1.
(Here we write the action on F25 from the right.) The following table gives
the cycle type and index of these elements:

σ1 σ2 σ3 σ4

Cycle type 1138 11212 15210 15210

Ind 16 12 10 10

For natural action

Thus, by (2) we see that (σ1, σ2, σ3, σ4) is a genus 0 system, so there is
a rational function f(Z) ∈ C(Z) having G as geometric monodromy group
and branch cycle description given by the σi. Thompson’s question [Tho90]
is whether we can have f ∈ Q(Z). We give an answer which also takes care
of the different possibilities of the arithmetic monodromy group of f .

Definition 6.1. Let K be a field, and f, f̃ ∈ K(X) rational functions. We
call f and f̃ linearly equivalent over K, if there are linear fractional functions
`1, `2 ∈ K(X) such that f(X) = `1(f̃(`2(X))).

Theorem 6.2. Let f(Z) ∈ Q(Z) be a rational function with geometric mon-
odromy group G and branching data as above. Let A := Gal(f(Z)−t|Q(t)) be
the arithmetic monodromy group. Then there are, up to linear equivalence,
exactly one such functions with A = G, and exactly two with A/G = C2.

In the latter two cases, the field of constants is Q(
√

5).

The proof of this theorem is the subject of the following subsections.

Remark 6.3. The normalizer ofG in the symmetric group S25 isW . We have
W/G = C4. Grouptheoretically, there is the third possibility that A/G = C4.
We have not been able to prove existence in this case, though we have very
strong evidence for that.

Corollary 6.4. Up to linear equivalence, there are exactly two arithmetically
exceptional functions belonging to Theorem 4.1(I)(c)(iv).
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6.2 Passing to a different rational function

Let f be as in Theorem 6.2, and L be a splitting field of f(Z)− t over Q(t).
Denote by Q̂ the algebraic closure of Q in L. Then G = Gal(L|Q̂(t)) and
A := Gal(L|Q(t)), so A/G = Gal(Q̂|Q).

Thompson’s idea [Tho90] was to look at the fixed field of T in CL over
C(t). Then CL is an unramified Galois extension of this field (of genus 2)
with Galois group S(6)oF . Here we rather work with fixed fields which have
genus 0, and involve rational functions of type (2, 2, 2, 2).

Recall that A is one of the groups W(6), W(12), W(24). If A = W(i), then
A has, up to conjugation, the unique subgroup A(3) := W(i/3) of index 3. Set
G(3) := A(3) ∩ G. Let L(3) be the fixed field of A(3) in L. As A = GA(3), we
get that L(3) is a regular extension of Q(t) of degree 3. The action of the σi
on the coset space G/G(3) gives the following cycle types:

σ1 σ2 σ3 σ4

Cycle type 31 13 1121 1121

For action on G/G(3)

By the Riemann–Hurwitz genus formula (2), we see that L(3) has genus
0, furthermore L(3) is a rational field, because σ3 has a unique fixed point on
G/G(3).

Let H be an F–stable F5–subspace of T = F25. Then H is also stable
under S(2) and S(4), so the semidirect product H o (S(i/3) oF ) is a subgroup
of index 15 of W(i) for i = 6 or i = 12.

Suppose |A/G| ≤ 2, so A = W(i) for i = 6 or 12. Then let A(15) be the
subgroup of index 15 in A constructed above, which is also a subgroup of
index 5 of A(3). As A = GA(15), the fixed field L(15) of this subgroup is a
regular extension of Q(t). The action of the σi on G/G(15) gives the following
cycle types:

σ1 σ2 σ3 σ4

Cycle type 35 1326 1127 1525

Ind 10 6 7 5

For action on G/G(15)
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For the genus gL(15) of L(15) we obtain

2(15− 1 + gL(15)) = 10 + 6 + 7 + 5,

hence gL(15) = 0. As σ3 has a unique fixed point on G/G(15), the field L(15)

has a rational place, so this field is rational. As the cycle types of the σi
in this action are all different, we get that the branch points of L/Q(t) are
rational. Write L(15) = Q(z), so t = g(z) for a rational function g(Z) ∈ Q(Z).
We get a decomposition g(Z) = g1(g2(Z)), with gi ∈ Q(Z), deg g1 = 3, and
deg g2 = 5, such that L(3) = Q(g2(z)).

6.3 Rationality question for |A/G| ≤ 2

We use the results from Section 5 to precisely pin down the function g2 of
degree 5. As the branch points of g are rational, we may make the following
assumptions: ∞ corresponds to σ1, and 0 = g−11 (∞). Let 0 correspond to
σ3. The ramification information from above shows that the single point in
the fiber g−12 (0) is a branch point of g2. Assume that this branch point is∞.
Without loss assume that 4/27 is the branch point corresponding to σ4, and
that g1 has monic numerator and denominator. This gives

g1(X) =
(X − 1)2

X3
.

Finally, let 1/µ be the branch point corresponding to σ2. The ramification
information from above shows that g−11 (1/µ) consists of 3 different points,
which are branch points of g2. What we get is that g2 is a (2, 2, 2, 2) function
with branch points ∞ and the three roots of X3 − µ(X − 1)2. The elliptic
curve associated to the branching data of g2 thus is (see Section 5)

Y 2 = X3 − µ(X − 1)2. (3)

The j–invariant of E is

j = 256
µ(µ− 6)3

4µ− 27
.

On the other hand, as E has a rational isogeny of degree 5, its j–invariant is
of the form

j =
(η2 + 10η + 5)3

η

19



for some non–zero rational η, see Proposition 5.7. This gives the algebraic
curve relation

C : 256µ(µ− 6)3η = (4µ− 27)(η2 + 10η + 5)3.

The curve C is birationally equivalent to the elliptic curve

E : V 2 = U3 − 7U2 − 144U = U(U + 9)(U − 16).

Using the MAPLE package [Hoe95] and some adhoc tricks, we get the fol-
lowing birational correspondence, where ζ := (η2 + 10η + 5)/(µ− 6):

µ =
27(864V + U4 − 36U3 + 4320U)

4(U − 36)U3

η =
36V + V U − 13U2 + 108U

2U2

U =
9ζ2 − 36(η + 1)ζ + 144(η − 1)

4(η2 + 4η − 1)

V =
9(2η + 7)ζ2 − 36(η + 9)ζ − 144(3η + 5)

4(η2 + 4η − 1)

Lemma 6.5. The field of constants of f is the same one as the field of
constants of g2.

Proof. Of course, the field of constants of g2 is contained in the field of
constants of f . One verifies that the index of the core of A(15) in A(3) is 10 if
A = W(6), and 20 if A = W(12). So the degrees of the two fields of constants
are the same.

We are now going to study the rational points on C via the rational points
on E .

Lemma 6.6. The finite rational points (u0, v0) on E are (0, 0), (16, 0), (−9, 0),
(−4,±20), and (36,±180).

Proof. As 7 does not divide the discriminant of E , the rational torsion points
of E map injectively to the F7–rational points of the reduction E modulo
7, see [Sil86, VII.3.1]. We compute that there are exactly 8 points modulo
7 (including the one at infinity), so we are done once we know that the
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Mordell–Weil rank of E is 0. This however is well–known. Namely the linear
transformation X = U/4− 1, Y = (V − U)/8 maps E to the curve

Y 2 +XY + Y = X3 +X2 − 10X − 10,

which is C15 (one of the 8 curves with conductor 15) in the notation of
[Cre97], and shown to have rank 0 there, confer [Cre97, page 110].

Lemma 6.7. The rational points (µ0, η0) on C are (135/128,−25/8), (−5/4,−25/2),
(−675/8,−40), and (27/4, 0).

Proof. As η2 + 4η − 1 has no root in Q, the above transformation equations
show that the only possible rational points (µ0, η0) which are not mapped to
finite points on E have µ0 = 6. But that leads to η2 + 10η + 5 = 0, which
has no rational solution. The finite points (u0, v0) on E which give points on
C are those with u0 6= 0, 36. (Those with u0 = 0 or 36 give points on the
projective completion of C.)

We summarize:

Proposition 6.8. Let C be the set of linear equivalence classes of rational
functions g ∈ Q(X) such that g(X) = g1(g2(X)) with g1, g2 ∈ Q(X) and the
following holds:

(a) deg g1 = 3, and g1 has three rational branch points of branching type
31, 1121, and 1121.

(b) deg g2 = 5. Furthermore, g has, besides the three branch points of g1,
also the different rational branch point 1/µ, g2 is a (2, 2, 2, 2)–function
with branch points g−11 (1/µ) and a simple point g−11 (b), where b is a
branch point of g1 of type 1121.

Let Q̂ be the field of contants of g2. Then C has size 3, with g1 and g2 as
above, where µ0 = −675/8 gives Q̂ = Q, and µ0 = 135/128 or −5/4 gives
Q̂ = Q(

√
5).

Proof. The case (µ0, η0) = (27/4, 0) is nonsense, whereas the other ratio-
nal points on C give examples as stated. The claim about Q̂ follows from
Proposition 5.8
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6.4 Existence of f for |A/G| ≤ 2

We now use the functions gi from Proposition 6.8 in order to show that we
get back the desired functions f whose existence we hypothetically assumed.

Let Q̂ be the field of constants of g2. It is clear that the geometric
monodromy group of g is a transitive subgroup of the wreath product D5 oD3,
where D5 denotes the dihedral group of degree 5, and that in the case Q̂ = Q
the arithmetic monodromy group is a subgroup of the same wreath product,
whereas in the case Q̂ = Q(

√
5) it is a subgroup of (C5 o C4) oD3. Also, we

know the cycle types of the branch cycle description of g. Using the computer
algebra system GAP [S+95], one verifies that such a 4–tuple generates W(6)

in its action on 15 points, and that this group G is selfnormalizing in D5 oD3,
and that the normalizer of G in (C5oC4) oD3 is W(12). So the normalizers in
these wreath products are just the expected arithmetic monodromy groups
A. Now let L be a splitting field of g(Z) − t over Q(t), and E be a fixed
field of a subgroup U of A of index 25. One verifies that the σi induce the
expected action on G/(G∩U), also A = GU , so E has genus 0 and is regular
over Q(t). Also, E = Q(y) is rational, because σ1 has a unique fixed point in
this degree 25 action. Write t = f(y) for f(Y ) ∈ Q(Y ), and f is the desired
function.

A Computation of the (2, 2, 2, 4)–example

Let K be the proposed field of constants. In G = Gal(L/K(t)) there is a
subgroup U of index 6, such that the cycle types of σ1, σ2, σ3, and σ4 are
1222, 1421, 23, and 2141. Thus there is a rational function r(X) of degree 6
over K such that the fixed field of U is K(x) with r(x) = t. Let bi be the
branch point corresponding to σi. From the degree 9 action we see that b1
and b4 are rational. Without loss assume that b4 =∞, the 4–fold point over
b4 is ∞, and the other one is 0. A consideration similar to the one in the
(2, 2, 6)–case, utilizing the regular degree 4–extension over Q(t), shows that
b2 and b3 are algebraically conjugate and generate K over Q. Without loss
assume b2 = −λ, b3 = λ, with λ2 ∈ Q. If we make a further choice, namely
assume that the double point above b2 is 1, then r is given by

r(X) = −2
λ(8X3 + 8βX2 + 12X + 8βX + β2X + 8β + 16)2

(36 + 24β + β2)2X2
+ λ,
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where β ∈ K. Furthermore, we compute

b1 = −λ(β4 − 80β3 − 504β2 − 1728β − 2160)

β4 + 48β3 + 648β2 + 1728β + 1296
.

If we write β = u + vλ with u, v ∈ Q, and use that b1 has to be rational,
we get a polynomial condition in u and v. This polynomial is the product
of two genus 0 factors over Q, and it is easy to find rational points on them.
One of them gives λ =

√
2 and b1 = 44/25. Of course, we have used only

necessary conditions so far. Yet, nothing guarantees that the Galois closure
of K(x)/K(t) is Galois over Q(t). However, in the specific case one can use
an “almost–argument” to verify that. Namely express the coefficients of r
in terms of λ =

√
2, and denote by r̄ the function where we replace λ by

−λ. So the numerator of (r(X) − t)(r̄(X) − t) is in Q(t)[X] of degree 12,
and the Galois group should have size |A| = 144. One now checks that using
the computer algebra system KASH [DFK+96] for various specializations of
t. So we have a good candidate for the location of the branch points in
order to compute the function f ∈ Q(X) of degree 9. The branching data
gives polynomial equations for the coefficients of f . The resulting system
is too big to be handled and solved by the usual Groebner basis packages.
Instead, we use a MAPLE package by Raphael Nauheim [Nau95], which
computes the solutions modulo a fixed prime, and lift them to p–adic numbers
for sufficiently many digits in order to see periodicities and then guess the
rational numbers. Once one has such a function, it is routine to verify that
it has the desired properties, as we did in Section 4.
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