
ON A QUESTION OF DAVENPORT
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Abstract. Let k be a number field and denote by ok its ring of integers. Let p be a
non-zero prime ideal of ok. Denote by f̄ the polynomial derived from f by reducing

the coefficients modulo p. Set Vp (f) = {f̄(u)| u ∈ ok/p}. Davenport raised the
following question (with k being the rationals). Suppose f and g are polynomials in
ok[x] such that Vp (f) = Vp (g) for all but finitely many non-zero prime ideals of ok.
Does this imply f(X) = g(aX + b) for some a, b ∈ k? Extending work of M. Fried,

we give an affirmative answer under rather general conditions, and also new types of
counter–examples.

1. Introduction. Let k be a number field and denote by ok its ring of integers.
We are interested in the value sets of f ∈ ok[X] on the residue fields of ok. More
precisely: Let p be a non-zero prime ideal of ok. Denote by f̄ the polynomial derived
from f by reducing the coefficients modulo p. Set Vp(f) = {f̄(u)| u ∈ ok/p}.

Question. Let f , g ∈ ok[x] such that Vp(f) = Vp(g) for all but finitely many
non-zero prime ideals of ok. Does this imply f(X) = g(aX + b) for some a, b ∈ k?

The original question of Davenport is in the case k = Q.
The answer is affirmative if k = Q and f is indecomposable or has odd prime

power degree, see [6]. However, for k ̸= Q there are counterexamples even for
indecomposable polynomials f , as M. Fried proved, see [8] and section 6. If k = Q,
then the answer is also not generally affirmative — a simple counterexample is given
by f(X) = X8, g(X) = 16X8.

In this paper we give an affirmative answer for a large class of decomposable
polynomials, namely those satisfying condition (∗) below. Using further examples
in section 6 we show that our results are sharp. Our study of indecomposable
polynomials amounts to studying certain imprimitive permutation groups. Section
5 contains the group theoretic version of Davenport’s question.

2. Kronecker Equivalence of Polynomials. Let f and g be polynomials in
k[X], where k is a field of characteristic 0. Let E be a field containing k. Choose a
transcendental t and fix a Galois extension Ω of E(t) that contains elements x and
y with f(x) − t = 0 and g(y) − t = 0. Denote by G the Galois group of Ω|E(t).
Then f and g are said to be Kronecker equivalent over E if the following holds for
every element of G: It fixes a root of f(X) − t = 0 if and only if it fixes a root of
g(Y )− t = 0.

In group–theoretic terms: Let U and V be the stabilizers of x and y in G,
respectively. Then f and g are Kronecker conjugate if and only if

∪
g∈G Ug =∪

g∈G V g.
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Clearly, the definition of Kronecker equivalence does not depend on the choice of
Ω. If E1 ⊆ E2, then Kronecker equivalence over E1 implies Kronecker equivalence
over E2.

The key for attacking the Davenport problem is

2.1 Theorem [4, Lemma 19.27]. Let k be a number field and f , g ∈ ok[X]. Then
Vp(f) = Vp(g) for all but finitely many non-zero prime ideals of ok if and only if f
and g are Kronecker equivalent over k.

3. Monodromy groups. In order to formulate our main result, we need some
definitions. The monodromy group of f(X) ∈ E[X] is the Galois group of the
polynomial f(X)− t over Ē(t). If a ̸= 0, b, and c are complex numbers and n ∈ N,
then we call the polynomial (aX + b)n + c cyclic. The reason for this is that its
monodromy group is cyclic. Similarly, we call the polynomial a · T (bX + c) + d
dihedral, where T is defined by T (Z + 1

Z ) = Zn + 1
Zn . (T is one of the definitions

of a Tchebychev Polynomial.) Two polynomials f and g in E[X] are said to be
linearly related over E if there are a, b ∈ E, a ̸= 0, with f(X) = g(aX + b).

A polynomial f ∈ k[X] is said to be indecomposable over k, if it is not the
composition of two non-linear polynomials in k[X]. We use the fact that if char(k) =
0 then f is indecomposable over k if and only if it is indecomposable over any
extension of k, see [9, Theorem 3.5]. Thus in the following we drop the phrase ‘over
k’.

We use the following consequence of a Theorem of Ritt, see [12], or [1] for a
modern account.

3.1 Theorem (Ritt). Let f1 ◦f2 ◦ . . .◦fr = g1 ◦ g2 ◦ . . .◦ gs be two decompositions
into non-linear indecomposable polynomials from C[X]. Assume that no fi is a
cyclic or dihedral polynomial. Then r = s and fi = L−1

i−1 ◦ gi ◦ Li with linear
polynomials Li. In particular, the monodromy groups of fi and gi are canonically
permutation equivalent.

Further, we need the following well-known fact, see [5].

3.2 Lemma. If f ∈ C[X] is indecomposable, then its monodromy group is either
non-solvable or cyclic, dihedral or S4.

Actually, the monodromy groups of indecomposable polynomials have been com-
pletely classified as a consequence of the classification of finite simple groups, see
[11].

4. Results. We consider the following condition on a polynomial f ∈ C[X]:

(*). f can be written as the composition of non-linear indecomposable polynomials
none of which is cyclic, dihedral, or has degree 4.

We call a polynomial f ∈ C[X] a Davenport polynomial if there is another
polynomial g ∈ C[X] which is Kronecker equivalent to f (over C), but not linearly
related (over C) to f . A clever elementary argument shows that an indecomposable
Davenport polynomial cannot have rational coefficients [6, Section 3]. Using the
classification of finite simple groups, W. Feit showed there are exactly six families
of indecomposable Davenport polynomials, of degree 7, 11, 13, 15, 21, and 31,
respectively. See [2] together with [3, Theorem 4.1].
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4.1 Theorem. Let f, g ∈ C[X] be polynomials that are Kronecker conjugate over
C. If f satisfies (∗), then the following holds

(1) If f , g ∈ Q[X], then there exist a, b ∈ Q with f(X) = g(aX + b).
(2) If none of the fi is a Davenport polynomial, then there exist a, b ∈ C with

f(X) = g(aX + b).

From Theorem 2.1 we immediately get

4.2 Corollary. Let k be a number field and f, g ∈ ok[X]. Suppose Vp(f) = Vp(g)
for all but finitely many non-zero prime ideals of ok. If f satisfies (∗), then the
following holds

(1) If f , g ∈ Q[X], then there exist a, b ∈ Q with f(X) = g(aX + b).
(2) If none of the fi is a Davenport polynomial, then there exist a, b ∈ C with

f(X) = g(aX + b).

Proof of Theorem 4.1.
Set E = Q or E = C, according to (1) or (2). We use the group-theoretic

Lemma 5.1 from the next section. Pick x and y in an algebraic closure of C(t)
such that f(x) = g(y) = t. Denote by Ω the Galois closure of C(x, y)|C(t). Set
G = Gal(Ω|C(t)) and let U and V be the fix groups of C(x) and C(y) respectively.
Then 5.1(iii) holds, as f and g are Kronecker conjugate.

Let Z be the inertial group (= stabilizer) in G of a place of Ω lying over the
place of C(t) at infinity. Then 5.1(i) and (ii) hold (because C(x)|C(t) and C(y)|C(t)
are totally ramified at infinity).

Let L andM be as in 5.1(iv). Then there are polynomials f (1), f (2), f (3) ∈ E[X],
such that f(X) = f (1)(f (2)(f (3)(X))) and f (2) is indecomposable with monodromy
group M , see [9, Theorem 3.4]. By the hypothesis (*) on f , Theorem 3.1, and
Lemma 3.2 we get that M is not solvable.

Suppose that M doesn’t meet the requirement 5.1(iv). Then f (2) is a Davenport
polynomial, because it follows from the classification of the finite doubly transitive
groups, which contain a regular cyclic subgroup [3, Theorem 4.1], that if B1 and B2

are two complements to Z ∩M in M , then
∪

g∈M Bg
1 =

∪
g∈M Bg

2 . This contradicts

the assumption in (2). In case (1) with E = Q, we use Fried’s result that f (2) ∈
Q[X] is impossible, see [6, Section 3].

Thus all conditions are fulfilled, so we get U = V α for some α ∈ G. Thus
yα ∈ C(x), i.e. f(x) = t = g(yα) = g(r(x)) for some rational function r ∈ C(X).
Clearly r must be a polynomial, and deg(f) = deg(g) · deg(r). But deg(f) = [G :
U ] = [G : V ] = deg(g), hence r is linear.

Thus we are done in case (2), and it remains to show that f and g are linearly
related even over Q in (1). Set n = deg(f) = deg(g). The polynomials f and g

are linearly related (over Q) to polynomials f̃ and g̃, respectively, such that the

coefficients of Xn−1 of the latter two polynomials vanish. Then f̃(X) = g̃(cX + d)
with c, d ∈ C. It follows that d = 0. Compare the highest coefficient of the
polynomials to get cn ∈ Q. Let e be the smallest positive integer with ce ∈ Q.
Then f̃ , g̃ ∈ Q[X] implies f̃(X) = h(Xe) for some h ∈ Q[X]. But the assumption
about f implies e = 1, hence c ∈ Q. Therefore f and g are linearly related over
Q. □
5. A group-theoretic lemma. If G is a group and H is a subgroup, then
coreG(H) denotes the intersection of the conjugates of H in G.
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5.1 Lemma. Let G be a finite group with subgroups U , V , and Z such that

(i) Z is cyclic
(ii) G = UZ = V Z
(iii)

∪
g∈G Ug =

∪
g∈G V g

(iv) For any groups L and M with U ≤ L < M ≤ G and L maximal in M the
following holds: Let g 7→ ḡ denote the canonical homomorphism from M
to M := M/ coreM (L). Then M is not solvable and there is at most one

M -conjugacy class of subgroups B of M with M = B(Z ∩M).

Then U = V g for some g ∈ G.

Remark. The Theorem is wrong if we drop one of the two conditions on M in (iv),
see the discussion of counter-examples in 6.

Proof. We study a counter-example with |G| minimal.

Step 1. If N ◁ G with 1 ̸= N , then UN = V gN for some g ∈ G.

Proof. This follows from the minimality of |G| once we know that the hypotheses
(i) to (iv) remain satisfied if we consider the configuration modulo N . This is clear
for (i), (ii), and (iii). For (iv) use the canonical isomorphism between the lattice of
subgroups of G/N and the lattice of subgroups of G containing N . □

In the sequel we frequently use the following consequence of condition (ii): If M
is a subgroup of G containing U , then {Mg| g ∈ G} = {Mz| z ∈ Z}. In particular,
Z ∩M ≤ coreG(M). The same holds for V instead of U .

Step 2. coreG(U) = coreG(V ) = 1 and U ∩ Z = V ∩ Z = 1.

Proof. Set X = coreG(U). Then

XV ≤ X ·
∪
z∈Z

Uz =
∪
z∈Z

(XU)z =
∪
z∈Z

Uz =
∪
z∈Z

V z .

In particular XV ∩ Z ≤
∪

z∈Z V z, hence XV ∩ Z ≤ V (because Z is abelian).
From G = V Z we get XV = (XV ∩ Z)V ≤ V , hence X ≤ V . If X ̸= 1, then
it follows by Step 1 that U = UX = V gX = V g for some g ∈ G, contradicting
the assumption that G is a counter-example. Thus X = 1. The second assertion
follows from U ∩ Z ≤ coreG(U) = 1. Similarly for V . □

Step 3. There exists a subgroup W of G which contains both U and a G-conjugate
of V as maximal subgroups.

Proof. Among all subgroups of G that contain U or V properly, pick one with
minimal cardinality, call it W . If W = G, we are done. Now assume W ̸= G.
Suppose for instance that U < W . Then D = coreG(W ) is nontrivial (as it contains
W ∩ Z > 1). By Step 1 we get UD = V gD for some g ∈ G. Thus V g ≤ UD ≤
W . □

Let’s introduce some more notation. Choose a group W according to Step 3.
We may assume that U and V are both maximal subgroups of W . We already
remarked that W has a nontrivial core in G. So pick a minimal (nontrivial) normal
subgroup N of G which is contained in W . By Step 2 N is neither contained in U
nor in V . Thus, by maximality of U and V in W , we get W = UN = V N . Set
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NU = coreW (U) and NV = coreW (V ). Note that NU and NV are the kernels of
the action of W on the coset spaces W/U and W/V , respectively.

Since N is a minimal normal subgroup of G, it can be written as N = S1S2 · · ·St,
the direct product of simple groups Si. These Si’s are permuted transitively by G.

Step 4. Exactly one of the Si’s, say S1, is not contained in NU .

Proof. For Y ≤ W denote by Y the image of Y in W/NU . Then W acts faithfully
and primitively (as U is maximal in W ) on the coset space W/U . Since W =
(W ∩ Z)U , the group W ∩ Z is a cyclic transitive subgroup of W . Moreover, W
is not solvable by (iv), hence W is 2-transitive on W/U by theorems of Schur and
Burnside [13, Theorems 25.3 and 11.7]. Because W is a 2-transitive permutation
group, it has a unique minimal normal subgroup S which is either elementary
abelian or simple non-abelian (see [13, Exercise 12.4]). Let S be the preimage of S
in W . If a 2-transitive permutation group with cyclic transitive subgroup has an
elementary abelian normal subgroup of order pr, then pr = 4 or r = 1, see [10, Proof
of Satz 5]). Since W is not solvable, S is a simple non-abelian group. From N ̸= 1
(Step 2) we get that N contains the unique minimal normal subgroup S of W .
Thus S is a simple normal subgroup of N = S̄1S̄2 · · · S̄t, hence S = Si for some i,
say S = S1. Then CW (S1)◁W . But S1 is not abelian, therefore S = S1 ̸≤ CW (S1).

This shows CW (S1) = 1, in particular Sj ≤ NU for j ≥ 2. □
Step 5. W ≤ NG(S1).

Proof. Follows from Step 4, since W permutes the Si’s and normalizes NU □
Step 6. NU = CW (S1).

Proof. We showed CW (S1) = 1 in the proof of Step 4, hence CW (S1) ≤ NU . We
get the other inclusion as follows: S1 is simple and normal in W by Step 5. Thus
S1 ∩NU = 1 and therefore NU ≤ CW (S1). □
Step 7. Exactly one of the Si’s, call it Si0 , is not contained in NV . We have:
W ≤ NG(Si0) and NV = CW (Si0).

Proof. We proceed as in Steps 4, 5, and 6, using that W/NV is not solvable. This
is the case because N = S1S2 · · ·St has non-trivial image in W/NV (by Step 2),
and the Si’s are simple non-abelian groups. □
Step 8. Every group L that contains U is self-normalizing in G.

Proof. Assume that there is an element g ∈ G \ L that normalizes L. Then L ◁
⟨L, g⟩ =: H. Now pick a subgroup M of H that contains L as a maximal subgroup.
But M/L is cyclic, contrary to (iv). □
Step 9. i0 = 1.

Proof. First observe that Z permutes the Si’s transitively, because G does so, W
fixes S1 (by Step 5), and G = WZ. Therefore NG(Sj) ∩ Z is independent from j.
By Steps 5 and 7 we know that W is contained in NG(S1) and NG(Si0), hence

NG(S1) = (NG(S1) ∩ Z)W = (NG(Si0) ∩ Z)W = NG(Si0) .

Pick g ∈ G with Si0 = Sg
1 . Then

NG(S1) = NG(Si0) = NG(S1)
g .

But g ∈ NG(S1) by Step 8, therefore Si0 = Sg
1 = S1. □
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Step 10. The final contradiction.

Proof. From Steps 6, 7, and 9 we getNU = NV . Again write Y for the homomorphic
image of Y ≤ W in W/NU = W/NV . Set C := Z ∩W . From W = (W ∩ Z)U =
(W ∩ Z)V we get W = C̄Ū = C̄V̄ . Now use (iv) to conclude that U and V are
conjugate in W . But this implies conjugacy of U and V in W , contrary to the
assumption of a counter-example. □

6. Examples. We believe that Theorem 4.1(1) cannot be improved considerably.
The special assumption (*) on the indecomposable components of f is the transla-
tion of 5.1(iv). If we drop parts of (iv), then Lemma 5.1 admits counter-examples.
In several cases corresponding polynomials can be constructed. In the examples we
found these polynomials cannot be chosen with rational coefficients, so they do not
contradict Theorem 4.1(1). However, they do contradict Theorem 4.1(2) and thus
provide negative answers to the Question in the Introduction.

Up to now only the following construction of Fried was known: Choose a group
G with PSLm(q) ≤ G ≤ PΓLm(q) with m ≥ 3 and q a prime power, which is a
monodromy group of a polynomial (there are 5 such cases, see [2]). Let Z be a
Singer cycle. Let U and V be just as the stabilizer of a point and a hyperplane
in the underlying projective space, respectively. Then (i), (ii), and (iii) of 5.1 are
fulfilled, however U and V are not conjugate. A similar construction works with
G = PSL2(11) in its representation of degree 11.

The examples just sketched fulfill the non-solvability condition on M 5.1(iv),
however they fail the assumption on the complements. Even if we keep the condition
on the complements, but drop the condition on the non-solvability on M , counter-
examples arise. The “smallest” one which yields a realization of a pair of Kronecker
equivalent polynomials is as follows: Set G = GL2(3). Let Z be a Singer cycle of

G, for instance let Z be generated by

(
0 1
1 −1

)
. Let U be the stabilizer of

(
1
0

)
and

let V be generated by

(
−1 0
0 1

)
and

(
−1 1
0 1

)
.

To this example there corresponds a pair of polynomials that is Kronecker eqi-
valent over C (and then also over a suitable number field), but not linearly related
over C. For this let a and b be the two solutions of 27T 2 − 14T + 3 = 0. Then
f(X) = (X2 − 1)3(aX2 − 1), g(X) = (X2 − 1)3(bX2 − 1) is such a pair. One can
slightly modify this example to get a counter-example to the Question from the
Introduction over the field Q(

√
−2): Replace in g the term X2 by −3X2.

7. Remarks on a related question. Let f, g ∈ C[X] be polynomials, and U , V ,
and G be the Galois groups defined as in the proof of Theorem 4.1. If f and g are
Kronecker conjugate, then 5.1(iii) holds. This shows that then any v ∈ V has a fixed
point on the coset spaceG/U , hence V is intransitive onG/U , thus UV ⊂ G (proper
inclusion). The group theoretic propert UV ⊂ G is equivalent to f(X)−g(Y ) being
reducible. If f and g are indecomposable and f(X) − g(Y ) is reducible, then the
converse holds, that is f and g are even Kronecker conjugate, see [6, Lemma 3]. In
the general case of decomposable polynomials however f(X)−g(Y ) being reducible
is a much weaker condition than f and g being Kronecker conjugate. Our setup
in section 5 does not cover this more general question. There is no substitute for
the induction step 1 in the proof of Lemma 5.1. The condition UV ⊂ G does not
inherit to factor groups, in contrast to condition 5.1(iii). Fried [7, section 2] has
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some results in this direction, and he also displays the difficulties arising there.
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