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Abstract

Davenport conjectured1 that a polynomial f(X) ∈ Q[X] is, up to a
linear substitution over Q, uniquely given by its value sets modulo all
but finitely many primes. We classify the degree 8 counter-examples,
and conjecture that all counter-examples are derived from these degree
8 examples.

1 Introduction

Let f ∈ Q[X] be a polynomial. If the prime p does not divide any denomina-
tor of f , then the value set f(Fp) on the field with p elements is defined. Two
polynomials f, g ∈ Q[X] are said to be Kronecker conjugate, if f(Fp) = g(Fp)
holds for all but finitely many primes p. This happens of course if f and
g differ by a linear substitution over Q, that is, f(X) = g(aX + b) with
0 6= a ∈ Q, b ∈ Q. In this case we say that f and g are linearly related
over Q. A Kronecker conjugate pair which is not linearly related over Q is
called properly Kronecker conjugate. See [FJ05, Chapter 21.6] or [Mül98] for
a more thorough introduction to this question and basic results.

Pairs of Kronecker conjugate polynomials have the same degrees (see be-
low). The first serious progress in Davenport’s problem was Fried’s result
that there are no pairs (f, g) of properly Kronecker conjugate polynomials if
f is functionally indecomposable in Q[X]. This follows from [Fri74, Section
2] combined with [Fri73, Section 3]. In [Mül98] this was extended to the case

1Orally communicated to M. Fried in 1968
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that f has composition length 2, again there are no properly Kronecker con-
jugate examples. Thus potential counter-examples have composition length
3, in particular they need to have degree at least 8. The pair (X8, 16X8) is an
almost trivial counter-example. A closer look shows that there is actually a
1-parameter family of counter-examples of degree 8. We classify them all. In
particular, the open problem 21.6.2 in [FJ05] need to be modified. Note that
d = 0 below gives the known examples f = X8, g = 16X8. The polynomial
f given below fulfills f(Z−d/Z) = Z8 +(d/Z)8−2d4, so f(X) = D8(X,−d),
where Dn(X, a) denotes the Dickson polynomial of the first kind of degree 8.

Theorem. For d ∈ Q set f(X) = ((X2+2d)2−2d2)2 and g(X) = f(
√

2X) =
((2X2 + 2d)2− 2d2)2. Then f and g are properly Kronecker conjugate. Con-
versely, if F and G is a pair of properly Kronecker polynomials of degree 8,
then there are a, b ∈ Q such that F is linearly related to af + b, and G is
linearly related to ag + b.

I believe that all examples are derived from f and g. Using the computer
algebra system Magma I have verified it up to degree 30. (This was also done
in the diploma thesis by Lu Dan.)

Conjecture. Let F, G ∈ Q[X] be a pair of properly Kronecker conjugate
polynomials. Then there is a polynomial h(X) ∈ Q[X], such that F and G
are linearly related to h(f(X)) and h(g(X)), respectively, with f and g as in
the Theorem.

2 Grouptheoretic reformulation

Let f, g ∈ Q[X] be two non-constant polynomials, and t a transcendental
over C. Let L be a common splitting field of f(X) − t and g(X) − t over
Q(t). The main tool for studying Davenport’s problem is

Proposition 2.1 (Fried). The following are equivalent.

(a) f and g are Kronecker conjugate.

(b) Each element of Gal(L/Q(t)) fixes a root of f(X)− t if and only if it
fixes a root of g(X)− t.
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Fried’s original proof used Cebotarev’s density theorem for function fields
over finite fields. A modification, which also uses model theory, can be
found in [FJ05]. Another proof, based on Hilbert’s irreducibility theorem
and Frobenius’ density theorem for number fields, is given in [Mül98].

If two polynomials are Kronecker conjugate, then they have the same
degree, see [FJ05, 21.6.7]. Furthermore, Gal(L/Q(t)) acts faithfully on the
roots of f(X) − t as well as on the roots of g(X) − t. Thus consider A =
Gal(L/Q(t)) as a faithful permutation group on the n roots of f(X)− t. Let
V be a stabilizer in A of a root of g(X)− t. Then, by the above proposition,
f and g are Kronecker conjugate if and only if the union

⋃
a∈A V a of the

conjugates of V consists precisely of those elements of A which fix at least
one fixed. Suppose f and g are properly Kronecker conjugate. As f and g
have the same degree, we get [A : V ] = n. Thus if V would fix a point, then
it would be the stabilizer in A of this point. Thus some root of f(X) − t is
contained in the field generated by Q and a root of g(X) − t. This easily
shows that f and g are linearly related over Q. Therefore V does not fix a
point.

Let G = Gal(LC/C(t)). Clearly, G is a normal subgroup of A. As f(X)−t
is irreducible over C(t), we get that G is still transitive on G. However, more
is true: It is well known (see e.g. [Mül98]) that G is the monodromy group of
the branched covering P1 → P1, z 7→ f(z) of Riemann spheres. The action of
G on the roots of f(X)− t is equivalent to the action of G on a regular fiber
of the covering. From that one obtains (see [Mül98]) that G is generated by
elements σ1, σ2, . . . , σr such that the product σ1σ2 . . . σr is an n-cycle, and∑r

i=1 ind σi = n− 1, where ind σ denotes n minus the number of cycles of σ.
Let AGL1(8) be the group of permutations x 7→ ax + b on Z/8Z for all

a ∈ (Z/8Z)?, b ∈ Z/8Z.

Proposition 2.2. Let f and g be a Kronecker conjugate pair of polynomials
of degree 8. Then after suitably identifying the roots of f(X) − t with the
elements in Z/8Z, we have A = AGL1(8) and all orbits of V have length 2.
Furthermore, either G is cyclic of order 8, or r = 2 and σ1 = (x 7→ ax),
σ2 = (x 7→ ax + 1) with a ∈ {−1, 3}. In any case, G∩ V is a point-stabilizer
in G.

Proof. By Fried’s branch cycle argument (confer e.g. [Mül98, Section 2.2]),
we know that AGL1(8) ≤ A. On the other hand, f is a composition of 3
polynomials of degree 2 by [Mül98, Theorem 1.2]. Thus A has a chain of
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subgroups A > M > K > U descending by index 2, and U is a point-
stabilizer (see [Mül98, 2.7]). Thus A is a 2-group. As V is a 2-group, and
each element of V fixes at least 2 points, we obtain that V has at least 3
orbits. As V does not fix a point, the orbit lengths are 2, 2, 2, 2 or 2, 2, 4.
The orbit lengths of a point-stabilizer of AGL1(8) are 1, 1, 2, 4. As U contains
this point-stabilizer and fixes a point, we obtain that U has the same orbit
lengths 1, 1, 2, 4. Thus U <≤ C2 × D4. Here Cn denotes the cyclic group
of order n in its regular action, and Dn the degree n action of the dihedral
group of order 2n. Hence |U | ≤ 16.

We claim that |U | ≤ 8. Suppose that U = C2 × D4. By Kronecker
conjugacy V contains a 4-cycle, and a product of a 4 cycle with disjoint
transposition. From the orbit structure of V we obtain 1 × C2 × C4 ≤ V
(with the first factor acting trivially on 2 points). As V does not fix point,
there is an element (α, β, γ) ∈ V with a transposition α. We may assume
α = β, so (α, α, γδ) ∈ V for each δ ∈ C4. However, D4 contains only
three elements with fixed points, so the coset γC4 contains a fixed point free
element, giving a fixed point free element in V , a contradiction.

Thus |U | ≤ 8, so [A : AGL1(8)] ≤ 2. The derived subgroup of AGL1(8)
is generated by τ = (1, 3, 5, 7)(2, 4, 6, 8). We obtain that A normalizes <τ>.
Suppose that |U | = 8 and that U fixes 1. Then U is generated by (2, 4, 6, 8)
and (3, 7)(4, 6). In particular, U contains a 4-cycle, and so does V . Thus
V has orbit lengths 2, 2, 4, and V contains at least 2 nontrivial elements
with at least 4 fixed points. Thus the number of orbits of V is at least
1
8
(8 + 2 · 4 + 5 · 2) > 3, a contradiction.

Thus A = AGL1(8), so |V | = 4. Each element in V has at least 2 fixed
points, so V has at least 1

4
(8 + 3 · 2) = 7

2
> 3 orbits. On the other hand,

each orbit of V has length ≥ 2, and the claim follows. It remains to compute
the generating system σ1, . . . , σr for G. If r = 1 then σ1 is an 8-cycle, and
G = C8. Thus suppose r ≥ 2. The sum of the ind σi is 7, and clearly
ind σ ≥ 2 for all 1 6= σ ∈ A, so r ≤ 3. Let C be generated by x 7→ x + 1. If
r = 3, then without loss of generality (ind σ1, ind σ2, ind σ3) = (2, 2, 3). But
ind σ = 2 if and only if σ = (x 7→ 5x+ ε) with ε ∈ {0, 4}. So σ1σ2 ∈ C, hence
σ3 ∈ C, a contradiction.

Thus r = 2 and (ind σ1, ind σ2) = (3, 4). By conjugation with an element
from C we may assume that σ1 fixes 0, so σ1 = (x 7→ ax) with a ∈ (Z/8Z)?.
But ind σ1 = 3 forces a = −1 or a = 3. We get σ2 = σ−1

1 (x 7→ x + 1) = (x 7→
ax + 1).
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3 Computation of the pairs (f, g)

We start to compute f . From the structure of A it is clear that f is a
composition of 3 quadratic polynomials. A branch point of f is a number
c ∈ C such that the fiber f−1(c) consists of less than 8 elements. Suppose
that r = 2 and that σ1 and σ2 are as in the proposition above. Then f has
two branch points b1 and b2. The multiplicities of the roots of f(X)− bi are
the cycle lengths of σi. If bi 6= Q, then there is an automorphism σ of C with
bσ
i 6= bi. But then bσ

i is another branch point, and the corresponding σ has
the same cycle lengths. However, σ1 and σ2 have 3 and 4 cycles (of length 2)
respectively, so bi ∈ Q. By linear changes over Q we may assume that b2 = 0,
f is monic, and the penultimate coefficient of f vanishes. Furthermore the
cycle type of σ2 tells us that f(X) is the square of a separable polynomial,
so f(X) = (X4 + aX2 + bX + c)2 with a, b, c ∈ Q. As X4 + aX2 + bX + c is
the composition of two quadratic polynomials, we may assume X4 + aX2 +
bX + c = (X2 + 2d)2 + e, so

f(X) = ((X2 + 2d)2 + e)2 with d, e ∈ Q \ {0}.

Clearly e2 is a branch point of f(X), so this must correspond to σ1. Thus
the multiplicities of the roots of f(X)− e2 are 1, 1, 2, 2, 2. As

f(X)− e2 = (X2 + 2d)2(X4 + 4dX2 + 4d2 + 2e)

we obtain that X4 + 4dX2 + 4d2 + 2e has two simple roots and one multiple
root. The discriminant of X4 + 4dX2 + 4d2 + 2e is (up to a constant factor)
(2d2 + e)e2, thus e = −2d2. We obtain

f(X) = ((X2 + 2d)2 − 2d2)2.

If we allow d = 0, then f(X) = X8. This case corresponds to the possibility
G = C8. Therefore, allowing d = 0, we cover all possible cases from the
proposition. It remains to find g. By a linear change over Q of the argument
of g we may assume that the penultimate coefficient of g vanishes. As V ∩G
has order at most 2, we see that V ∩G fixes a root of f(X)− t. Thus f and
g are linearly related over C. As the penultimate coefficients of f and g both
vanish, we get λ ∈ C with g(X) = f(λX). From

g(X) = f(λX) = λ8X8 + 8λ6dX6 + · · · ∈ Q[X]
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we obtain λ2 ∈ Q, provided that d 6= 0. For the moment assume d 6= 0.
All orbits of V have length 2, so the irreducible factors of f(X)− g(Y ) over
Q(Y ) have degree 2. We have

f(X)− g(Y ) = f(X)− f(λY )

= ((X2 + 2d)2 − ((λY )2 + 2d)2)

((X2 + 2d)2 + ((λY )2 + 2d)2 − 4d2)

= (X2 − λ2Y 2)(X2 + λ2Y 2 + 4d)

(X4 + 4dX2 + λ4Y 4 + λ2dY 2 + 4d2).

Write ` = λ2 ∈ Q \ {0}. So X4 + 4dX2 + `2Y 4 + 4`dY 2 + 4d2 is a product of
two polynomials of degree 2 in X. Therefore there are U, V,W ∈ Q[Y ] with

X4 + 4dX2 + `2Y 4 + 4`dY 2 + 4d2 = (X2 + UX + V )(X2 − UX + W ).

Comparing coefficients yields

V + W − U2 = 4d

U(V −W ) = 0

V W = `2Y 4 + 4`dY 2 + 4d2.

Suppose first that U = 0. Then V +W = 4d and V W = `2Y 4 +4`dY 2 +4d2.
This gives

(V − 2d)2 = −λY 4 − 4λdY 2 = −4λY 2(λY 2 + 4d).

But λY 2 + 4d is separable, hence not a square in C[Y ]. Therefore U 6= 0, so
V = W . Thus

V 2 = `2Y 4 + 4`dY 2 + 4d2 = (`Y 2 + 2d)2.

Again, `Y 2 + 2d is separable, so V = W = ±(`Y 2 + 2d). This gives

U2 = V + W − 4d = ±2(`Y 2 + 2d)− 4d.

As −2(`Y 2 + 2d)− 4d is separable, we must have the other case

U2 = 2(`Y 2 + 2d)− 4d = 2`Y 2.

Thus 2` is a square, so up to linear changes over Q of g we may assume
λ =

√
2.
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We get the same conclusion in the case f = X8, g = λ8X8 as follows.
Again, X8 − λ8Y 8 is a product of irreducible factors over Q(Y ) of degree 2.
In particular, there is µ 6= 1 with µ8 = 1 and (X−λY )(X−λµY ) ∈ Q[X, Y ],
hence

λ(µ + 1) ∈ Q
λ2µ ∈ Q.

From that we get µ + 1
µ

= (λ(µ+1))2

λ2µ
∈ Q. First suppose µ 6= −1. Then the

minimal polynomial of µ has degree at least 2. On the other hand, there is
a ∈ Q with µ2 − aµ + 1 = 0. The only irreducible degree 2 factor of X8 − 1
is X2 + 1, so a = 0, hence µ2 = −1. Let λ(µ + 1) = b ∈ Q. Then

λ2 =
b2

(µ + 1)2
=

b2

2µ
.

Now µ4 = 1, no matter if µ = −1 or µ2 = −1. So we obtain

λ8 = (
b2

2µ
)4 =

b8

16
.

This shows that, up to a linear change over Q, that g has the form g(X) =
16X8 = (

√
2X)8.

We are left to show that the pairs f, g we constructed are indeed properly
Kronecker conjugate. They are obviously not linearly related over Q, so we
just need to verify Kronecker conjugacy. A somewhat cumbersome approach
would be to compute Galois groups and apply Fried’s proposition. Instead,
we prefer to directly verify the arithmetic property. Setting λ =

√
2 we

compute

f(X)− g(Y ) = (X2 − 2Y 2)(X2 + 2Y 2 + 4d)(X2 − 2XY + 2Y 2 + 2d)

(X2 + 2XY + 2Y 2 + 2d)

= (X2 − 2Y 2)(X2 + 2(Y 2 + 2d))((X − Y )2 + (Y 2 + 2d))

((X + Y )2 + (Y 2 + 2d)).

Let p be a prime which does not divide the denominator of d. We claim that
g(Fp) ⊆ f(Fp). For this choose y ∈ Fp, and suppose that there is no x ∈ Fp

with f(x) = g(y). Then the first three factors of the above factorization
show that 2, −2(y2 + 2d) and −(y2 + 2d) are non-squares in Fp. However,

7



the product of these three elements is a square in Fp, so one of the factors is
a square, a contradiction.

The other inclusion f(Fp) ⊆ g(Fp) follows analogously for odd primes p
not dividing the denominator of d.
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