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Abstract

Davenport conjectured! that a polynomial f(X) € Q[X] is, up to a
linear substitution over Q, uniquely given by its value sets modulo all
but finitely many primes. We classify the degree 8 counter-examples,
and conjecture that all counter-examples are derived from these degree
8 examples.

1 Introduction

Let f € Q[X] be a polynomial. If the prime p does not divide any denomina-
tor of f, then the value set f(F,) on the field with p elements is defined. Two
polynomials f, g € Q[X] are said to be Kronecker conjugate, if f(F,) = g(FF,)
holds for all but finitely many primes p. This happens of course if f and
g differ by a linear substitution over Q, that is, f(X) = g(aX + b) with
0#ae€Q be Q. In this case we say that f and g are linearly related
over Q. A Kronecker conjugate pair which is not linearly related over Q is
called properly Kronecker conjugate. See [FJ05, Chapter 21.6] or [Miil98] for
a more thorough introduction to this question and basic results.

Pairs of Kronecker conjugate polynomials have the same degrees (see be-
low). The first serious progress in Davenport’s problem was Fried’s result
that there are no pairs (f, g) of properly Kronecker conjugate polynomials if
f is functionally indecomposable in Q[X]. This follows from [Fri74, Section
2] combined with [Fri73, Section 3|. In [Miil98] this was extended to the case
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that f has composition length 2, again there are no properly Kronecker con-
jugate examples. Thus potential counter-examples have composition length
3, in particular they need to have degree at least 8. The pair (X?®, 16X?®) is an
almost trivial counter-example. A closer look shows that there is actually a
1-parameter family of counter-examples of degree 8. We classify them all. In
particular, the open problem 21.6.2 in [FJ05] need to be modified. Note that
d = 0 below gives the known examples f = X%, g = 16X8. The polynomial
f given below fulfills f(Z —d/Z) = Z8+(d/Z)® —2d*, so f(X) = Dg(X, —d),
where D, (X, a) denotes the Dickson polynomial of the first kind of degree 8.

Theorem. Ford € Q set f(X) = ((X?2+2d)?—2d?)? and g(X) = f(v2X) =
((2X2%+2d)? —2d*)%. Then f and g are properly Kronecker conjugate. Con-
versely, if F' and G is a pair of properly Kronecker polynomials of degree 8,
then there are a,b € Q such that F is linearly related to af + b, and G is
linearly related to ag + .

I believe that all examples are derived from f and g. Using the computer
algebra system Magma I have verified it up to degree 30. (This was also done
in the diploma thesis by Lu Dan.)

Conjecture. Let F,G € Q[X] be a pair of properly Kronecker conjugate
polynomials. Then there is a polynomial h(X) € Q[X], such that F' and G
are linearly related to h(f(X)) and h(g(X)), respectively, with f and g as in
the Theorem.

2 Grouptheoretic reformulation

Let f,g € Q[X] be two non-constant polynomials, and ¢ a transcendental
over C. Let L be a common splitting field of f(X) — ¢ and g(X) — ¢ over
Q(t). The main tool for studying Davenport’s problem is

Proposition 2.1 (Fried). The following are equivalent.
(a) f and g are Kronecker conjugate.

(b) Each element of Gal(L/Q(t)) fizes a root of f(X) —t if and only if it
fizes a oot of g(X) —t.



Fried’s original proof used Cebotarev’s density theorem for function fields
over finite fields. A modification, which also uses model theory, can be
found in [FJ05]. Another proof, based on Hilbert’s irreducibility theorem
and Frobenius’ density theorem for number fields, is given in [Miil98].

If two polynomials are Kronecker conjugate, then they have the same
degree, see [FJ05, 21.6.7]. Furthermore, Gal(L/Q(t)) acts faithfully on the
roots of f(X) —t as well as on the roots of g(X) —t. Thus consider A =
Gal(L/Q(t)) as a faithful permutation group on the n roots of f(X)—t. Let
V be a stabilizer in A of a root of g(X) —¢. Then, by the above proposition,
[ and g are Kronecker conjugate if and only if the union (J,., V* of the
conjugates of V' consists precisely of those elements of A which fix at least
one fixed. Suppose f and g are properly Kronecker conjugate. As f and g
have the same degree, we get [A : V] = n. Thus if V' would fix a point, then
it would be the stabilizer in A of this point. Thus some root of f(X) —t is
contained in the field generated by Q and a root of g(X) — ¢t. This easily
shows that f and g are linearly related over Q. Therefore V' does not fix a
point.

Let G = Gal(LC/C(t)). Clearly, G is a normal subgroup of A. As f(X)—t
is irreducible over C(t), we get that G is still transitive on G. However, more
is true: It is well known (see e.g. [Miil98]) that G is the monodromy group of
the branched covering P! — P!, z — f(2) of Riemann spheres. The action of
G on the roots of f(X) —t is equivalent to the action of G on a regular fiber
of the covering. From that one obtains (see [Miil98]) that G is generated by
elements oy, 09,...,0, such that the product o,05...0, is an n-cycle, and
> i_,indo; = n —1, where ind o denotes n minus the number of cycles of .

Let AGL;(8) be the group of permutations x +— ax + b on Z/8Z for all
a € (Z/87)",be Z/3Z.

Proposition 2.2. Let f and g be a Kronecker conjugate pair of polynomials
of degree 8. Then after suitably identifying the roots of f(X) — t with the
elements in 7 /87, we have A = AGL1(8) and all orbits of V' have length 2.
Furthermore, either G is cyclic of order 8, orr = 2 and 01 = (x — ax),
o9 = (x — ax+ 1) with a € {—1,3}. In any case, GNV is a point-stabilizer
in G.

Proof. By Fried’s branch cycle argument (confer e.g. [Miil98, Section 2.2)),
we know that AGL;(8) < A. On the other hand, f is a composition of 3
polynomials of degree 2 by [Miil98, Theorem 1.2]. Thus A has a chain of



subgroups A > M > K > U descending by index 2, and U is a point-
stabilizer (see [Miil98, 2.7]). Thus A is a 2-group. As V' is a 2-group, and
each element of V fixes at least 2 points, we obtain that V has at least 3
orbits. As V does not fix a point, the orbit lengths are 2,2,2,2 or 2,2, 4.
The orbit lengths of a point-stabilizer of AGL;(8) are 1,1,2,4. As U contains
this point-stabilizer and fixes a point, we obtain that U has the same orbit
lengths 1,1,2,4. Thus U << C5 x D4. Here C),, denotes the cyclic group
of order n in its regular action, and D,, the degree n action of the dihedral
group of order 2n. Hence |U| < 16.

We claim that |[U| < 8. Suppose that U = Cy x D,. By Kronecker
conjugacy V contains a 4-cycle, and a product of a 4 cycle with disjoint
transposition. From the orbit structure of V we obtain 1 x Cy x Cy < V
(with the first factor acting trivially on 2 points). As V' does not fix point,
there is an element (a, 3,7) € V with a transposition a. We may assume
a = (3, so (a,a,v0) € V for each 6 € Cy. However, D, contains only
three elements with fixed points, so the coset vCy contains a fixed point free
element, giving a fixed point free element in V', a contradiction.

Thus |U] < 8, so [A: AGL;(8)] < 2. The derived subgroup of AGL;(8)
is generated by 7 = (1, 3,5,7)(2,4,6,8). We obtain that A normalizes <7>.
Suppose that |U| = 8 and that U fixes 1. Then U is generated by (2,4, 6, 8)
and (3,7)(4,6). In particular, U contains a 4-cycle, and so does V. Thus
V' has orbit lengths 2,2,4, and V contains at least 2 nontrivial elements
with at least 4 fixed points. Thus the number of orbits of V is at least
$(8+2-4+5-2) > 3, a contradiction.

Thus A = AGL;(8), so |V| = 4. Each element in V' has at least 2 fixed
points, so V has at least %(8 +3-2) = % > 3 orbits. On the other hand,
each orbit of V' has length > 2, and the claim follows. It remains to compute
the generating system oy, ...,0, for G. If r = 1 then o, is an 8-cycle, and
G = Cg. Thus suppose r > 2. The sum of the indo; is 7, and clearly
indo >2foralll1#c¢€ A, sor <3. Let C be generated by  — x + 1. If
r = 3, then without loss of generality (ind oy, ind o9,ind o3) = (2,2,3). But
indo = 2 if and only if 0 = (z — bz +¢€) with € € {0,4}. So 0105 € C, hence
o3 € C', a contradiction.

Thus r = 2 and (ind 0y, ind 09) = (3,4). By conjugation with an element
from C' we may assume that oy fixes 0, so 0y = (2 — ax) with a € (Z/8Z)*.
But indo; = 3 forcesa = —lora=3. Weget oy =0, (z+—2+1) = (v
ar + 1). O



3 Computation of the pairs (f,g)

We start to compute f. From the structure of A it is clear that f is a
composition of 3 quadratic polynomials. A branch point of f is a number
¢ € C such that the fiber f~!(c) consists of less than 8 elements. Suppose
that » = 2 and that o; and o, are as in the proposition above. Then f has
two branch points b; and by. The multiplicities of the roots of f(X) — b; are
the cycle lengths of ;. If b; # Q, then there is an automorphism ¢ of C with
by # b;. But then b is another branch point, and the corresponding o has
the same cycle lengths. However, o; and o5 have 3 and 4 cycles (of length 2)
respectively, so b; € Q. By linear changes over QQ we may assume that by, = 0,
f is monic, and the penultimate coefficient of f vanishes. Furthermore the
cycle type of o9 tells us that f(X) is the square of a separable polynomial,
so f(X) = (X*+aX?+bX 4 ¢)? with a,b,c € Q. As X* +aX?+bX +cis
the composition of two quadratic polynomials, we may assume X* + aX? +
bX +c=(X?+2d)? +e, s0

F(X) = ((X? +2d)* +¢)? with d,e € Q\ {0}.

Clearly €? is a branch point of f(X), so this must correspond to o;. Thus
the multiplicities of the roots of f(X) —e? are 1,1,2,2,2. As

FX) —e? = (X% 4 2d)%(X* + 4dX? 4 4d® + 2¢)

we obtain that X + 4dX? 4 4d? + 2e has two simple roots and one multiple
root. The discriminant of X 4 4dX? + 4d? + 2¢ is (up to a constant factor)
(2d? + e)e?, thus e = —2d?. We obtain

f(X) = ((X* +2d)* — 2d°)*.

If we allow d = 0, then f(X) = X8. This case corresponds to the possibility
G = (5. Therefore, allowing d = 0, we cover all possible cases from the
proposition. It remains to find g. By a linear change over Q of the argument
of g we may assume that the penultimate coefficient of g vanishes. As VNG
has order at most 2, we see that V' NG fixes a root of f(X) —¢. Thus f and
g are linearly related over C. As the penultimate coefficients of f and g both
vanish, we get A € C with ¢g(X) = f(AX). From

g(X) = f(AX) = A®X® + 8\%dX°® + - € Q[X]



we obtain A2 € Q, provided that d # 0. For the moment assume d # 0.
All orbits of V' have length 2, so the irreducible factors of f(X) — g(Y') over
Q(Y') have degree 2. We have

F(X) =g(Y) = f(X) = f(AY)
= ((X? +2d)* — (\Y)? + 2d)%)
(X2 +2d)? + (\Y)? + 2d)? — 4d?)
= (X2 = N2YH)(X2 + \2Y? + 4d)
(X +4dX? + MY+ N2dY? + 4d?).

Write £ = A2 € Q\ {0}. So X* +4dX? + (*Y* 4+ 4dY? + 4d? is a product of
two polynomials of degree 2 in X. Therefore there are U, V,W € Q[Y] with

XY 4 4dX? + Y+ 4dY? +4d° = (XP+UX + V(X2 - UX + W).
Comparing coefficients yields

V+W —-U?=4d
UV -W)=0
VW = 2Y* + 40dY? + 4d>.

Suppose first that U = 0. Then V+W = 4d and VW = £2Y* 4 440dY? + 4d>.
This gives

(V —2d)? = =AY* —4XdY? = —4\Y?(\Y? + 4d).

But A\Y? + 4d is separable, hence not a square in C[Y]. Therefore U # 0, so
V =W. Thus

VZ =Y 4 4dY? + 4d* = (0Y? 4 2d)°.
Again, (Y2 + 2d is separable, so V =W = £+({Y? + 2d). This gives
U=V +W —4d = £2({Y? + 2d) — 4d.
As —2(¢Y? + 2d) — 4d is separable, we must have the other case
U? =2(0Y? + 2d) — 4d = 20Y>.

Thus 2/ is a square, so up to linear changes over Q of g we may assume

A =2



We get the same conclusion in the case f = X%, g = A*X® as follows.
Again, X® — AY® is a product of irreducible factors over Q(Y') of degree 2.
In particular, there is u # 1 with u® = 1 and (X = \Y)(X —\uY) € Q[X, Y],
hence

Ap+1) €Q
NueQ.

From that we get u + i = W € Q. First suppose u # —1. Then the
minimal polynomial of x4 has degree at least 2. On the other hand, there is
a € Q with p? —apu + 1 = 0. The only irreducible degree 2 factor of X% — 1
is X2+ 1,50 a=0, hence u? = —1. Let A(u+ 1) =b € Q. Then

,_ 0 B
(k+1)2 2pu
Now u* = 1, no matter if 4 = —1 or u? = —1. So we obtain
Wo =t
21 16

This shows that, up to a linear change over Q, that g has the form g(X) =
16X% = (vV2X)35.

We are left to show that the pairs f, g we constructed are indeed properly
Kronecker conjugate. They are obviously not linearly related over Q, so we
just need to verify Kronecker conjugacy. A somewhat cumbersome approach
would be to compute Galois groups and apply Fried’s proposition. Instead,
we prefer to directly verify the arithmetic property. Setting A = /2 we
compute

f(X) —g(Y) = (X?—2Y?)(X? + 2Y? 4+ 4d)(X? — 2XY +2Y? + 2d)
(X% 4+ 2XY +2Y2 + 2d)
= (X? —2Y?) (X2 +2(Y2 +2d))((X = Y)? + (Y* +2d))

(X +Y)*+(Y?+2d)).
Let p be a prime which does not divide the denominator of d. We claim that
g(F,) C f(F,). For this choose y € F,, and suppose that there is no =z € F,

with f(z) = ¢(y). Then the first three factors of the above factorization
show that 2, —2(y* + 2d) and —(y* + 2d) are non-squares in F,. However,
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the product of these three elements is a square in I, so one of the factors is
a square, a contradiction.

The other inclusion f(F,) C ¢(F,) follows analogously for odd primes p
not dividing the denominator of d.
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