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Theorem 1 (Wan [Wan93)). Let f € F,[X] be a non-constant polynomial

which is not bijective on F,. Then |f(F,)| < q— Cfetglf.

In [Tur95] Turnwald gave an elementary proof of Wan’s theorem which
avoided his use of p-adic lifting techniques. The following is an even further
simplification which grew out from a discussion with Mike Zieve.

Lemma 2. Let F(X;,...,X,) be a homogeneous and symmetric polynomial
of degree v where 1 < r < q—2. Then F(ay,...,a,) = 0, where the a; are
distinct elements from F,.

Proof. Pick 0 # b € F,. Then bay,...,ba, is a permutation of ay,...,a,,
so F(ay,...,ay) = F(bay,...,ba,) by the symmetry of F. Furthermore,
F(bay,...,bay) = U"F(ay,...,a,), as F' is homogeneous of degree r. Thus
(1 —-0")F(ay,...,a;) = 0. The polynomial X" — 1 has at most r < ¢ — 2
roots in Iy, therefore there is a nonzero b € F, such that 1 —b" # 0. Then
F(ay,...,a,) =0. O

Lemma 3. Let F(Xy,...,X,) be a symmetric polynomial of degree < q — 2.
Then F(ai,...,a,) = F(0,...,0), where the a; are distinct elements from
F

q-

Proof. Write F' as a sum of its homogeneous components (which are sym-
metric too), and apply the previous lemma. O

Upon replacing f(X) with f(X) — f(0) we may and do assume that
7(0) =0,

Let T be another variable, and set

q

G(Tv Xi,... ’Xq) = H(T - f(Xz)) - H(T - Xz)

i=1 =1



Note that the T-degree of G is at most ¢ — 1. For 0 < j < ¢—1 let F} be the
coefficient of 77 in G(T, X1, ..., X,). Then F; € F [X1,..., X,] is symmetric
in Xy,...,X, and has degree at most (¢ — j) deg f. Thus deg F; < ¢ — 1 for
j>q-— fe_glf. Note that G(T,0,...,0) =T7—-T7 =0, so F;(0,...,0) =0
for all j. Again let ay,...,a, be the elements from [F,. The previous lemma

then shows that Fj(aq,...,a,) =0 forall j > ¢— (;’e—;f. Thus G(T, a1, ..., a,)
q—1

hat degree at most g — st

By construction, every element in f(F,) is a root of G(T', ay, ..., a,). The
assertion follows unless G(T', a1, ...,a,) = 0. But then [],x (T — f(a)) =
[Tocr, (T —a), so f is bijective on Fy.
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