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Theorem 1 (Wan [Wan93]). Let f ∈ Fq[X] be a non-constant polynomial
which is not bijective on Fq. Then |f(Fq)| ≤ q − q−1

deg f
.

In [Tur95] Turnwald gave an elementary proof of Wan’s theorem which
avoided his use of p-adic lifting techniques. The following is an even further
simplification which grew out from a discussion with Mike Zieve.

Lemma 2. Let F (X1, . . . , Xq) be a homogeneous and symmetric polynomial
of degree r where 1 ≤ r ≤ q − 2. Then F (a1, . . . , aq) = 0, where the ai are
distinct elements from Fq.

Proof. Pick 0 6= b ∈ Fq. Then ba1, . . . , baq is a permutation of a1, . . . , aq,
so F (a1, . . . , aq) = F (ba1, . . . , baq) by the symmetry of F . Furthermore,
F (ba1, . . . , baq) = brF (a1, . . . , aq), as F is homogeneous of degree r. Thus
(1 − br)F (a1, . . . , aq) = 0. The polynomial Xr − 1 has at most r ≤ q − 2
roots in Fq, therefore there is a nonzero b ∈ Fq such that 1 − br 6= 0. Then
F (a1, . . . , aq) = 0.

Lemma 3. Let F (X1, . . . , Xq) be a symmetric polynomial of degree ≤ q− 2.
Then F (a1, . . . , aq) = F (0, . . . , 0), where the ai are distinct elements from
Fq.

Proof. Write F as a sum of its homogeneous components (which are sym-
metric too), and apply the previous lemma.

Upon replacing f(X) with f(X) − f(0) we may and do assume that
f(0) = 0.

Let T be another variable, and set

G(T,X1, . . . , Xq) =

q∏
i=1

(T − f(Xi))−
q∏

i=1

(T −Xi).
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Note that the T -degree of G is at most q− 1. For 0 ≤ j ≤ q− 1 let Fj be the
coefficient of T j in G(T,X1, . . . , Xq). Then Fj ∈ Fq[X1, . . . , Xq] is symmetric
in X1, . . . , Xq and has degree at most (q − j) deg f . Thus degFj < q − 1 for
j > q − q−1

deg f
. Note that G(T, 0, . . . , 0) = T q − T q = 0, so Fj(0, . . . , 0) = 0

for all j. Again let a1, . . . , aq be the elements from Fq. The previous lemma
then shows that Fj(a1, . . . , aq) = 0 for all j > q− q−1

deg f
. Thus G(T, a1, . . . , aq)

hat degree at most q − q−1
deg f

.

By construction, every element in f(Fq) is a root of G(T, a1, . . . , aq). The
assertion follows unless G(T, a1, . . . , aq) = 0. But then

∏
a∈Fq

(T − f(a)) =∏
a∈Fq

(T − a), so f is bijective on Fq.
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