

COMMON EIGENVECTOR OF COMMUTING PAIR OF ENDOMORPHISMS

PETER MÜLLER

Theorem. *Let V be a finite dimensional vector space over a field K , such that every endomorphism of V has an eigenvalue in K . Then any two commuting endomorphisms of V have a common eigenvector in V .*

Proof. We prove the claim by induction on $\dim V$. There is nothing to do if $\dim V = 1$.

Now suppose that $\dim V > 1$, and let $a, b \in \text{End } V$ be two commuting endomorphisms. Let λ be an eigenvalue of a , and U be the kernel of $a - \lambda \text{id}$. Since $b(U) \subseteq U$, we are done if b has an eigenvector in U . Suppose that this is not the case.

Let W be the image of $a - \lambda \text{id}$, and U' be a complement of W in V . As $\dim U = \dim U'$, there is an automorphism c of V such that $c(U) = U'$. Note that $c \circ b \circ c^{-1} \in \text{End } U'$. Let $d \in \text{End } W$ be arbitrary. We claim that d has an eigenvector in W . To see this, we define $d' \in \text{End } V = \text{End}(U' \oplus W)$ by

$$d'(u' + w) := c(b(c^{-1}(u'))) + d(w).$$

As b has no eigenvector in U , neither has d' in U' . On the other hand, d' has an eigenvector in $V = U' \oplus W$ by the assumption, so d has an eigenvector in d .

From $a(W) \subseteq W$ and $b(W) \subseteq W$ and $\dim W < \dim V$ and the induction hypothesis we obtain a common eigenvector of a and b in W . \square